
Hey, NSA: Stay Away from my Market!
Future Proofing App Markets against Powerful Attackers

Sascha Fahl
USECAP

FKIE, Fraunhofer
Bonn, Germany

sascha.fahl@fkie.fraunhofer.de

Sergej Dechand
USECAP

University of Bonn
Bonn, Germany

dechand@cs.uni-
bonn.de

Henning Perl
USECAP

FKIE, Fraunhofer
Bonn, Germany

henning.perl@fkie.fraunhofer.de

Felix Fischer
USECAP

University of Hannover
Hannover, Germany

fischer@usecap.uni-
hannover.de

Jaromir Smrcek
Zoner, Inc.

jaromir.smrcek@zoner.com

Matthew Smith
USECAP

University of Bonn
Bonn, Germany

smith@cs.uni-bonn.de

Abstract
Mobile devices are evolving as the dominant computing plat-
form and consequently application repositories and app mar-
kets are becoming the prevalent paradigm for deploying soft-
ware. Due to their central and trusted position in the soft-
ware ecosystem, coerced, hacked or malicious app markets
pose a serious threat to user security. Currently, there is
little that hinders a nation state adversary (NSA) or other
powerful attackers from using such central and trusted points
of software distribution to deploy customized (malicious)
versions of apps to specific users. Due to intransparencies in
the current app installation paradigm, this kind of attack is
extremely hard to detect.

In this paper, we evaluate the risks and drawbacks of cur-
rent app deployment in the face of powerful attackers. We
assess the app signing practices of 97% of all free Google
Play apps and find that the current practices make tar-
geted attacks unnecessarily easy and almost impossible to
detect for users and app developers alike. We show that
high profile Android apps employ intransparent and unac-
countable strategies when they publish apps to (multiple)
alternative markets. We then present and evaluate Applica-
tion Transparency (AT), a new framework that can defend
against “targeted-and-stealthy” attacks, mount by malicious
markets.

We deployed AT in the wild and conducted an extensive
field study in which we analyzed app installations on 253,819
real world Android devices that participate in a popular
anti-virus app’s telemetry program. We find that AT can
effectively protect users against malicious targeted attack

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660311.

apps and furthermore adds transparency and accountability
to the current intransparent signing and packaging strategies
employed by many app developers.

Categories and Subject Descriptors
D.4.4 [Software]: Communications Management—Network
communication; H.3.5 [Information Storage and Re-
trieval]: Online Information Services—Data Sharing

General Terms
Security, Human Factors

Keywords
Android, Apps, Signing, Application Transparency

1. INTRODUCTION
The process of installing software is a highly security rele-

vant action – and in the face of powerful attackers including
nation state adversaries, it is currently a leap of faith that
the software being installed has not been tampered with.
While in the past physical media offered some assurance as
to the provenance of software and made it unlikely that the
version of software being installed was tampered with in a
targeted attack, the move to digital downloads and app mar-
kets offers a very convenient way for powerful adversaries to
target specific users with customized malware. In the case of
digital downloads from websites, users could in theory ver-
ify the software being installed by comparing checksums1.
However, this procedure is hard to use for the average user
and never received widespread adoption. Central software
repositories, and more recently mobile app markets, require
developers to sign software/apps prior to inclusion into the
repositories. This offers more convenience and in many cases
a higher level of security for users compared to direct down-
loads from webpages. However, there is no automated mech-
anism for users or developers to verify that an app being in-

1Assuming the channel used to obtain the checksum was not
compromised as well.

1143



stalled is actually the original and untampered app released
by the developer.

Recent revelations have shown how infrastructure organi-
zations can be pressured or attacked by nation state adver-
saries who want to gain access to specific targets. In May
2014, it became public that parcel services gave the National
Security Agency access to routers that were intended to be
shipped overseas so they could install backdoors. The pack-
ages were then resealed and shipped containing the back-
doors [15]. In September 2011 the DigiNotar Certificate
Authority was attacked by the Iranian government and is-
sued fake SSL certificates to attack 300,000 Iranian Gmail
users [23]. These two publicly known attacks illustrate the
power that nation state adversaries can and will assert on in-
frastructure and service providers which distribute software
and hardware to circumvent security measures.

The central app distribution process via markets or repos-
itories is a similarly tempting target. An adversary in con-
trol of an app market or repository as well as an adversary
who can coerce an app market or repository can easily dis-
tribute custom malware to specific users or groups of users.
This is a particularly convenient attack vector since most
app markets require personal registration and hence make
it easy to identify and target specific users. App markets
have already been the target of attacks with the aim to dis-
tribute malicious apps in the past [6, 20, 14, 28, 27, 25, 5,
26, 11]. Especially in the light of the limited capabilities of
mobile anti-virus apps [24, 21], Android’s app ecosystem is
an attractive candidate for targeted attacks.

A signature verification process vulnerability discovered in
2013 [4, 3] unveiled that maliciously modified apps may be
planted on around 75 % of all Android devices without users
being any the wiser [1]. This attack allows attackers to tam-
per with app updates in addition to fresh installs. However,
there are more subtle ways app markets can be used to open
up attack vectors against specific users: On a regular basis,
new security vulnerabilities are being discovered, (hopefully)
fixed and updates are released. However, for an app market
it is very easy to withhold updates from specific users, thus
guaranteeing that they remain vulnerable to known security
issues. While most app markets probably have their users’
best interest in mind most of the time, attacks against the
app markets themselves and the Snowden revelations neces-
sitate the possibility to verify that app markets and software
repositories behave correctly and treat all users equally.

In this paper, we conduct an extensive analysis and eval-
uation of the state of current Android app markets in terms
of transparency and accountability during app installation
and updating. We show that for both users and developers,
the current model of app distribution is severely flawed and
makes targeted (as well as non-targeted) attacks unneces-
sarily easy.

To overcome the resulting lack of transparency and ac-
countability, we present a new framework called Applica-
tion Transparency (AT). Our framework protects against
“targeted-and-stealthy”app markets by making attacks against
specific users or groups of users easily detectable. AT ex-
tends the concept of Certificate Transparency (CT) [19].
Unlike CT our system provides synchronous prevention in-
stead of only retroactive notification. With respect to app
installation and updates, AT guarantees that all users see
the same app and version as everyone else and that develop-
ers can be certain that no tampered versions of their apps

are distributed without their knowledge. Our approach can
be applied to any repository or app market based software
distribution system. We fully evaluated and implemented
our solution for Google Play and use this as an example
throughout the rest of the paper. We chose the Android
app market for the deployment of our solution, as it is one
of the largest and most vibrant app markets and has been
the target of a number of real world attacks in the past.

In this paper we make the following contributions:

• We analyze 989,935 distinct free Android apps from
Google Play (97% of all free apps in Google Play in
April 2014) in terms of developers’ app signing prac-
tices. We show that the current employment of signing
keys is unnecessarily intransparent and insecure.

• For 45 high-profile apps including WhatsApp and Face-
book, we evaluated the signing and packaging strate-
gies across Google Play and 22 alternative markets.
We show that current signing and packaging strategies
make it almost impossible for users to assess whether
they are running original apps or malware.

• We introduce and discuss a threat model for central-
ized software distributors.

• As an effective and easily deployable countermeasure,
we introduce Application Transparency (AT). AT is a
new framework to make software installations and up-
dates transparent to end users and developers, protect-
ing users against currently invisible (targeted) attacks.

• We provide an integration of the AT client side into the
OS as part of the “Verify Apps” procedure for Android
4.4 as well as a standalone app.

• To analyze the effectiveness of AT, we deployed it to
253,819 real world Android devices that participate in
the Zoner2 anti-virus telemetry program and evaluate
metadata of (third-party) apps installed on these de-
vices. We show that AT can effectively protect users
against malicious (targeted) attack apps and also adds
transparency and accountability to the current intrans-
parent signing and packaging strategies many app de-
velopers employ.

• We provide a public AT log for all Android apps that
we analyzed during our research. Our log currently
consists of 2,493,786 Android apps and is growing stead-
ily.

2. BACKGROUND
This section provides background information on the app

signing and installation process on Android as well as an
introduction to Certificate Transparency.

2.1 App Signing on Android
Android apps are digitally signed by signing keys held by

their developers [13]. Apps’ digital signatures are intended
to identify application authors and to establish trust be-
tween apps and Google Play. Google’s recommendation is
to use self-signed certificates with a key size of 2048 bits for
RSA keys and a validity period of at least 25 years. They do

2http://www.zonerantivirus.cz/clanek/android

1144

http://www.zonerantivirus.cz/clanek/android


not accept apps signed with a certificate that expires before
2033. In case developers author multiple Android apps, they
are encouraged to sign their apps with the same signing key.
Furthermore, app updates are expected to be signed with
the same key to enable the detection of malicious updates.

2.2 App Publishing in Google Play
To publish apps in Google Play, developers have to pack-

age an APK file, sign it and upload the APK file to Google
Play’s developer console. After adding a description and
determining in which regions and for which devices the app
should be available, the app goes through internal checks
before being published. One such check is Google’s Bouncer
service which analyzes apps for malware [12]. Other checks
include the verification of the signing key’s expiration date.
After uploading the APK file, a popup is shown to the de-
veloper promising to make the app available for download in
the next couple of hours. Usually apps or updates are avail-
able within 60 minutes after upload. Since many mobile
app companies offer apps for multiple platforms such as An-
droid, iOS, Blackberry and Windows Mobile, app building
and publishing is often outsourced to third party companies
that take care of signing and publishing apps (cf. Section
4).

2.3 Android App Installation and Updates
Whenever a new app is installed on the user’s discretion,

Android’s “Verify Apps” mechanism checks the app with
Google’s integrated anti-virus feature, verifies the APK file’s
digital signature with the developer’s certificate and keeps
the certificate for checking future app updates.

Updates for apps need to be signed with the original pri-
vate key that was used when the app was built initially.
Otherwise updates will be rejected and users are required to
uninstall previous versions before being able to install the
app’s latest version. Thus, in case developers lose their pri-
vate key and need to sign app updates with a new key, their
users are shown an error message stating the updates cannot
be installed.

2.4 Certificate Transparency
Certificate Transparency (CT) is a framework proposed by

Google that aims to securely and provably log all X.509 sign-
ing activities of Certificate Authorities [19]. The goal is to
prevent CAs from creating “attack” certificates which with-
out CT could then be used to mount Man-In-The-Middle at-
tacks against SSL connections with a very low risk of being
caught. The basic concept of CT is to offer a publicly avail-
able tamper-proof append-only log that contains all CA-
issued SSL certificates. Immediately after an SSL certificate
is added to the log, the log responds with a Signed Certifi-
cate Timestamp (SCT) which represents a promise of the
log to include the newly added certificate to the log within
the log’s Maximum Merge Delay (MMD) time. The log pro-
vides two different types of cryptographic proofs: (1) Users
of the log can obtain Proofs-of-Presence (PoPs) that allow
everyone to verify that a given SSL certificate is part of the
log and (2) users of the log can obtain Proofs-of-Consistency
(PoCos) to verify that a snapshot of the log is a successor
of a previous snapshot. CT knows two different types of
clients: (1) auditors are third parties that monitor CT logs
for correct behavior, e. g. an auditor checks whether PoCos
for a log are correct, (2) client software (such as a browser)

which does not directly communicate with a CT log server
but relies on the SCTs signed by a log. These clients must
trust the correct behavior of a log, which is checked by the
auditors. Web-browser users are clients of auditors and can
check a CT log’s correct behavior by asking an auditor for
the results of its consistency checks. A new extension of the
CT log is built every MMD and includes all existing and
new certificates added within the last MMD. The underly-
ing data structure of CT’s log is a Merkle Tree (MT), an
append-only tree in which every node is labelled with the
hash (typically SHA-256 or SHA-512) of the labels of its
children and possibly some additional metadata describing
the node. MTs enable the efficient verification that certain
data is present in the tree. A PoP requires log(n) hashes, n
being the layer count of the MT, and contains one hash of
each layer of the tree. Proving that one snapshot of a MT is
the successor of another snapshot can be done in logarithmic
time and space by providing one hash per layer of the tree.
The value at the root of an MT is signed with the private
key of the CT log provider and called the Signed Tree Hash
(STH).

2.4.1 Limitations
CT has a number of limitations:

Asynchronous Proof Validation.
For performance and infrastructural reasons, CT does not

conduct synchronous proof validation. Instead, the CT RFC
[19] proposes that users gossip received SCTs to detect pos-
sible attacks as soon as possible. This mechanism does not
protect users when establishing an SSL connection, but un-
covers malicious logs (i. e. logs that issue SCTs but do not
add the certificates to the log after the MMD) and attack
certificates with very high probability over time. This how-
ever leaves a time window open for successfully attacking
CT users.

Revocation.
While CT provides PoPs, with CT alone it is not possible

to check whether a given SSL certificate is still current and
has not been revoked. Revocation Transparency (RT) [18]
is a CT extension that allows certificate revocation. RT pro-
poses two different methods to store revocation information.
The first one is a so called Sparse Merkle Tree (SMT) that
is a regular MT in which most leaves are zero. A complete
path in an SMT has length 256 and represents the SHA-256
hash of an SSL certificate. The path ends with a 0 or 1 leaf
according to whether the certificate is revoked or not. The
second proposed structure to store revocation information
is a sorted list organized as a binary search tree. However,
Ryan [22] shows that both proposed approaches are inef-
ficient since proofs requiring linear space and time require
data sizes measured in tens of hundred of gigabytes, which
makes them impractical.

3. RELATED WORK
In addition to Google’s Certificate Transparency frame-

work, there are further academic proposals to provide trans-
parency or tamper-proof logs.

Kim et al. [17] propose a system called Accountable Key
Infrastructure (AKI) for SSL certificates. In AKI, so called
Integrity Log Server Operators are expected to log publicly

1145



available X.509 certificates and push them to an Integrity
Tree which is a lexicographically ordered hash tree. Since
an Integrity Tree is not an append-only data structure, all
operations in the tree are digitally signed and validators are
expected to monitor the correct operation of the Integrity
Log Server’s data structures and perform consistencychecks
between different versions of the tree. The Sovereign Keys
(SK) system [8] proposes to operate timeline servers that
act similarly to timestamping servers [16]. SK runs a Trust-
On-First-Use model, i. e. the first registration of an X.509
certificate binds the key to the domain name, subsequently
preventing duplicate registrations for the same name.

Ryan [22] proposes to enhance CT with an effective revo-
cation mechanism. He introduces a second lexicographically
ordered tree called LexTree in addition to the append-only
MT-based data structure called ChronTree. In conjunction,
both trees can now provide proofs of presence, currency and
absence of data in the log. Adding a second tree to the log re-
quires an auditor to not only prove consistency between two
different ChronTree versions but also between the Chron-
and LexTree. Consistency-Proofs between Chron- and Lex-
Trees are linear in time and space. Ryan proposes to apply
the enhanced CT framework to email encryption.

Related work also addresses app installation on Android
devices. Barrera et al. [2] analyzed 11,104 Android apps
and extracted 4,141 signing keys. They found that 18% of
the certificates sign more than one app. They also oper-
ate the https://androidobservatory.org service that pro-
vides meta information such as requested permissions, ver-
sion code and information about the signing key for 31,368
Android apps as of February 2014 from Google Play and
alternative markets. Zhou et al. [29] present DroidRanger,
a tool to detect malicious apps in popular Android mar-
kets. They propose a permission-based and a heuristic-based
scheme to detect malware in Android app markets and come
to the conclusion that the evaluated markets are functional
and relatively healthy. Zhou et al. [28] analyzed the occur-
rence of repackaged Android apps in six popular alternative
app markets and found that 5% to 13% apps in those al-
ternative app markets were repackaged. The problem of
repackaging of Android apps was also investigated by Zhou
et al. [27]. Vidas et al. [24] analyzed repackaging in al-
ternative markets and found that some markets exclusively
distribute repackaged versions of apps containing malware.
Permission dialogs allow users to decide whether they agree
to an app’s permission requests. Currently, those dialogs are
the only mechanism that protects users against too permis-
sion hungry apps. Felt et al [9] found that many developers
over-privilege their apps and that users have problems to
correctly understand Android’s permission dialogs or even
do not read them at all [10].

4. APP SIGNING PRACTICES
In the following section we evaluate app signing and pack-

aging strategies currently employed in Google Play and other
alternative markets. Therefore, we analyze the signing prac-
tices of 989,935 distinct free Android apps from Google Play
(97% of all free apps in Play as of April 2014)3.

For these apps, we extracted the signing keys to evaluate
Google Play’s current app signing practices. We extracted

3Due to geographical restrictions, we were not able to down-
load the remaining free apps.

380,345 distinct certificates that were used to sign all apps
in our corpus.

380,285 (99.98%) of the signing keys are self-signed, 5 apps
were signed by one single certificate issued by a dedicated
Android CA from Symantec. We found three certificates
signed by CAs from major telco providers such as Sony Er-
icsson, Cisco and Samsung. The remaining 47 certificates
were signed by developers’ custom CAs.

Table 1(a) summarizes the algorithm suites employed by
the certificates we analyzed. While 369,278 (97%) certifi-
cates apply current security best practices and secure al-
gorithm suites, 2860 certificates employ MD5 and 23 cer-
tificates use MD2 as their signature algorithm and hence
unnecessarily weaken their signature security.

51.6% of the certificates follow Google’s security guidelines
and have a key size of 2048 bits (cf. Table 1(c)). 0.1% of the
certificates employ larger keysizes and 48.15% employ 1024
bit keys. However, 277 certificates use 512 bit RSA keys and
hence undermine their apps’ security and Android’s security
guidelines.

Google recommends a validity period of 25 years or longer
for signing keys and requires that apps published in Google
Play must be signed by a certificate with a validity period
ending after 2033. Table 1(d) illustrates the distribution of
validity periods in our app corpus.

While 1% of the certificates have a shorter validity pe-
riod than recommended, 70 % are within the recommended
validity period (25 – 50 years). 12.3% of the certificates
have a rather optimistic validity period between 100 and
1000 years and 2033 of the certificates are valid for a 1000
years or longer. The longest validity period we found is a
certificate that is valid until the year 10,049. We found 9
certificates that expired before 2033; 4 of them issued in
2013. The most recent of these certificates was issued in
August 2013. Hence, Google Play’s enforcement of its own
guidelines seems to be rather laissez-faire.

Table 1(b) illustrates the distribution of signing keys and
the number of apps signed by a specific key. 92.28 % of all
keys are used to sign one unique app. However, we found
483 signing keys in our app corpus that signed up to 25,190
apps. Interestingly, 0.1 % of the keys we analyzed signed
113,842 (11.5 %) of the apps in our corpus.

Pathological Cases.
Four of the extracted keys signed 64,701 apps in our cor-

pus (cf. Table 2). Hence, about 7 % of all apps in Google
Play are signed by these four widely employed keys. While
this alone is suboptimal for app security, the fact that the
current Android ecosystem has no mechanism to revoke sign-
ing keys and their corresponding apps makes things even
worse.

These four signing keys belong to service providers that al-
low their customers to create mobile apps without much cod-
ing effort, like e. g. the Qbiki Networks key, which signs apps
for the Seattle Clouds4 service provider. Their customers
can download templates for apps, modify these templates
according to their needs and then let the service provider
build and publish their apps to app markets such as Google
Play or Apple’s App Store. During the build-process, all
apps are signed with the same private key. The app publish-
ing procedure creates two serious issues for both app owners

4http://seattleclouds.com/

1146

https://androidobservatory.org
http://seattleclouds.com/


Table 1: Results of our Signing Key Analysis

(a) Deployed Signing Algorithms

Algorithm Certificates Affected Apps

sha1WithRSA 215004 584901
sha256WithRSA 154274 284607
dsaWithSHA1 8154 20600
md5WithRSA 2860 16669
sha512WithRSA 28 33
md2WithRSA 23 82
sha1WithRSA 1 6
dsa 1 1

(b) Apps Signed per Certificate

Apps Per Certificate Certificates

< 5 390254
5 – 10 10967
11 – 20 3756
21 – 50 2292
51 – 100 673

101 – 1000 463
1001 – 10000 16

> 10000 4

(c) Deployed Key Sizes

Key Size Certificates Affected Apps

16384 3 3
8192 35 65
4096 599 1289
2048 196305 398322
1024 183126 506477
512 277 743

(d) Validity Periods of Certificates

Validity Period Affected Certificates

< 25 years 3839
25 years 101691

26 – 50 years 164763
51 – 100 years 61065

101 – 1000 years 46954
> 1000 years 2033

Table 2: Certificates that were used to sign more than 10,000 apps

Certificate Apps Count

L=Seattle/O=Qbiki Networks/OU=iOS/Android Development/CN=Andrew Vasiliu 25,190
C=CA/ST=MB/O=Andromo.com L=Winnipeg/OU=Development/CN=Andromo App 10,803
C=RU/ST=NSO/L=Novosibirsk/O=BestToolbars/OU=Desktopify/CN=Anton 15,269
C=US/ST=California/L=Chico/O=Bizness Apps/OU=Bizness Apps/CN=Andrew Gazdecki 13,439

and their users: (1) The app-building provider has access
to all apps’ source codes and (2) the signing and publish-
ing process is in its control. Hence, app-building providers
can modify apps and push these modifications to official app
markets under the radar of the actual developers and users.
Given the install counts provided by Google Play, up to 125
million devices have apps installed that were signed by this
single signing key.

4.1 Alternative Markets
Many apps are not published exclusively via Goole Play,

but can also be found in alternative Markets such as Ama-
zon’s Appstore or the F-Droid market. Overall, there are
more than 30 “official” alternative markets available5. In the
following, we evaluate app signing and packaging strategies
for 45 popular Android apps6.7.

Results.
In our sample set, we could not find a single app of which

the same version was available across all the markets we sur-
veyed. In all cases, the Google Play version was the most
current (but not necessarily as new as to be the most cur-
rent version according to official developer announcements),
which underpins the assumption that Google Play is the

5Cf. http://www.onepf.org/appstores/
6We chose the 45 most popular Android apps across Google
Play and 33 alternative markets, as listed by https://play.
google.com/store/apps.
7The complete list of apps and alternative markets we
checked is available as additional material at http://
application-transparency.org/files/altmarkets.pdf

most important app distributor for most developers. 19 of
the 45 apps we analyzed were signed with the same key
across all markets offering the app. However, although the
same signing keys were used, all apps distributed APK files
with different SHA-256 values. In 26 cases, at least two
different signing keys were employed. An interesting case
is the Amazon market that is supposed to be a benign al-
ternative market and offers 24 of the 45 popular Play apps
we tested. 15 of those apps were signed with different keys
than their counterparts in Google Play. A popular example
is WhatsApp. The officially announced most current ver-
sion8 is 2.11.169. Google Play offers version 2.11.152 and
we found 6 different “most current” versions of the app in 12
alternative markets.

4.2 Discussion
Analyzing the current app signing practices for 97% of

Google Play’s free Android apps and evaluating the update
and packaging strategies employed by popular Android app
providers unveils an unnecessary intransparency and inac-
countability for app users. The fact that single app sign-
ing keys are entrusted with more than 25,000 Android apps
constitutes a serious problem with verifying the authenticity
of Android apps. While Google intended to create a path
of authenticity between app developers and their apps by
enforcing (self-signed) certificates to sign apps, the current
trend towards outsourcing app signing and distribution to
a few big players in the market undermines this intention.
The fact that these service providers use one single key to
sign thousands of apps without an effective revocation mech-

8As of February 20th, 2014

1147

http://www.onepf.org/appstores/
https://play.google.com/store/apps
https://play.google.com/store/apps
http://application-transparency.org/files/altmarkets.pdf
http://application-transparency.org/files/altmarkets.pdf


anism at hand jeopardizes both app developers – since one
stolen private key may result in harmful updates for thou-
sands of apps – as well as app users, since one successful at-
tacker could plant malicious apps into hundreds of millions
of devices. In addition to the app signing bug uncovered in
2013 that still affects a huge portion of Android devices, the
fact that Google accepts signing keys with 512 bits for apps
and that such apps are actually deployed to Google Play
shows that Google’s line of defense is fragmentary.

Additionally, we found that even the most popular apps
are signed with different keys for the same version across
multiple markets, making it hard for their users to reliably
determine the authenticity of apps. Not having a straightfor-
ward tool at hand for verifying apps’ authenticity becomes
even more serious in the light of the fact that some alterna-
tive markets turn huge portions of their apps into malware
and then act as super-distribution points for malicious An-
droid apps [29]. Hence, users of alternative markets have no
chance to differentiate between harmless and harmful apps
– even if they compare apps’ checksums or certificates.

5. THREAT MODEL
In the following, we present and discuss our threat model

we call “targeted-and-stealthy”. Here we assume that rep-
utable app markets are not interested in distributing mal-
ware to all of their customers, but might be interested or co-
erced to attacking specific target users. Secondly we assume
that the app market attacker does not want these attacks
to become public knowledge. Currently, users who search,
download and install apps from centralized app markets and
repositories need to more or less blindly trust these distrib-
utors. The power to deploy (targeted) attacks held by soft-
ware distributors in the app market ecosystem is compara-
ble to Certificate Authorities in the world of SSL certificates
[23]. Due to their central and trusted position in the soft-
ware ecosystem, coerced, hacked or malicious app markets
have the ability to easily deploy targeted and stealthy at-
tacks against specific users or groups of users. Since apps
are signed with developer keys, mass-distribution of tam-
pered (malicious) apps cannot be considered a stealthy at-
tack. App developers could simply verify the authenticity
of their own apps and unveil the rogue market’s malicious
behavior. However, if tampered apps are only distributed
to specific targets, it is easily possible to run “targeted-
and-stealthy” attacks, especially in the light of current app
signing and packaging strategies employed by developers (cf.
Section 4).In our threat model we distinguish between app
markets and app market clients installed on users’ devices.
While app markets maintain repositories, app market clients
send install requests to markets and perform the actual in-
stallation. In our threat model, app markets as technical
and legal entities can be compromised or coerced and thus
are our threat actor. In contrast, app market clients are
installed on the users’ devices and for this work we con-
sider them to work correctly. The current status quo for
app market clients is that the installation of new apps must
be triggered by users, but updates to installed apps are in-
stalled silently without user interaction. This type of silent
(update) install can be triggered by the app market by of-
fering a newer version of an already installed app. Hence,
app markets cannot conduct silent installs but may trigger
silent updates. In this work we do not list kill switches as a
threat since these are an OS feature and not an app market

feature and thus are out of scope of this paper. In general,
malicious code in the OS or the app market client is not
considered in this paper9. In summary, our threat model
covers the following attacks app markets can mount with a
low risk of discovery:

Tampered/Malicious Apps: App markets can offer tam-
pered (malicious) apps to specific users or groups of
users.

Tampered/Malicious Updates: App markets can offer
tampered (malicious) updates to specific users or groups
of users.

Withheld Apps: App markets can withhold applications
from specific users or groups of users, for instance to
prevent the installation of security software or to per-
form censorship.

Withheld Updates: App markets can withhold updates
of apps (e. g. security patches) from specific users or
groups of users, for instance to keep them vulnerable
to security issues discovered in older app versions.

Removed Apps: In case that malware is discovered and
actually removed from app markets for the masses, the
markets can still offer the malware to specific users or
groups of users.

The above attack vectors are serious security issues for
app market customers. While no targeted-and-stealthy at-
tacks mount by app markets – either voluntarily or under the
pressure of a nation state adversary – have become public
knowledge, similar attacks in similar ecosystems have been
seen in the past [23, 15]. Thus we suggest preemptive action
to prevent such attacks from becoming reality.

6. APPLICATION TRANSPARENCY
To counter the lack of transparency in current app market

installation processes, we propose a new framework called
Application Transparency (AT). While Certificate Trans-
parency focuses on SSL certificates, we propose to transfer
the core idea of transparency to the world of software bina-
ries in general and provide a proof-of-concept implementa-
tion and evaluation for Android applications. We build on
the data structures and algorithms proposed by CT [19] and
LT [22] and leverage the unique properties of app markets
to improve previous work and solve the outstanding deploy-
ment issues.

The Application Transparency framework addresses the
security issues presented in our threat model (cf. Section 5).
For this, AT provides three different kinds of cryptographic
proofs that allows users to verify the authenticity of apps
provided by app markets. The Proof-of-Presence (PoP) is
a cryptographic proof that provides information about the
presence of an app in a market. This proof allows users to
make sure that a provided app is publicly available and not
a targeted-and-stealthy attack by the app market. Hence,
app markets cannot (be coerced to) send targeted (mali-
cious) apps to specific users, without these being easily de-
tectable by checking the public logs. Proofs-of-Presence also

9This is a similar assumption to stating that web browsers
are considered to work correctly when performing SSL cer-
tificate validation.

1148



App Market Log Server

Developer User

Auditor

Legend:
SAM

Scenario Only
NSAM

Scenario Only

1.
submits

to
market

2b.
submits
to log

2a.
submits
to log

3. APK

4a.
Proof

Proof

4b.
Proof

audits

Figure 1: All Parties involved in Application Trans-
parency

cover the prevention of silent installations of targeted-and-
stealthy malicious updates. The Proof-of-Currency (PoC)
is an extended PoP version and provides cryptographic in-
formation that allows users to verify the currentness of an
app’s version. Hence, app markets cannot (be coerced to)
withhold certain apps’ updates from specific users. PoCs can
be utilized as a revocation mechanism. Whenever an app’s
version should be removed from the log, a new (can be null)
hash value is added to the log. The Proof-of-Absence (PoA)
provides cryptographic information that allows users to ver-
ify app absence messages presented by app markets. Hence,
app markets cannot (be coerced to) withhold certain apps
from specific users.

AT involves multiple actors as illustrated in Figure 1:

App Developers.
App developers create Android apps and submit them to

markets – either to Google Play or one of the many alterna-
tives. In case the app market(s) support AT, the app release
procedure for developers does not change. However, if AT
is not supported by the respective market, developers have
to take one extra step, namely push their app to an AT log.
More information on the two cases can be found in Section
7.

App Markets.
App markets accept apps from developers and distribute

them to mobile users. App markets supporting our AT
framework will additionally distribute corresponding AT proofs
(cf. Section 6) to their users.

Mobile Users.
Mobile users install apps from app markets utilizing app

market clients such as the Google Play app on Android.
Along with the apps, AT proofs are sent to the users’ devices.
In case AT proof validation is supported by the integrated
app market client, users do not have to take any extra steps.
In case AT proof validation is not handled by the integrated
app market client, users who want to benefit from AT can
use the standalone AT app.

Log Providers.
Log providers operate a pair of two logs that constitute the

AT log: A ChronTree and a FixTree (cf. Section 6.1). There
are two interfaces, one for accepting new apps from app
markets or developers and a second to provide AT proofs.
The AT log is rebuilt every MMD to be able to provide the
most current proofs. Candidates for log providers are app
markets, anti-virus companies or organizations such as the
EFF. By cryptographically verifying Proofs-of-Consistency
over time and from different locations, the correct behav-
ior of an AT log provider can be ensured. Hence, users do
not have to blindly trust the provider to work correctly –
even a nation state adversary could run an AT log without
compromising any of AT’s security properties. Should a na-
tion state adversary such as the NSA submit an app to their
own log, a Proof-of-Currency would be available immedi-
ately. Due to the log’s append only structure, the app could
not be removed again. Even if the NSA revoked the app,
it would remain in the log and while a Proof-of-Currency
would no longer be available, the corresponding Proof-of-
Presence would remain. Hence, the fact that the app had
been submitted at one point could not be expunged again.

Auditors.
AT auditors monitor the correct behavior of log providers

and inform the public in case a log provider turns malicious.
auditors monitor AT logs by consistently verifying Proofs-of-
Consistency. AT log providers cannot be their own auditors,
but can audit other AT log providers. Anti-virus companies
could act as auditors, as well as for example the EFF. More-
over, app development companies/app generators as well as
Android users can act as auditors.

Table 3 illustrates the different actors and how they ben-
efit from participating in the AT ecosystem.

6.1 Log Structure
The AT log consists of a tuple of two interdependent

Merkle trees (ChronTree and FixTree).
As proposed by LT [22], we use the ChronTree which is an

append-only and therefore chronologically ordered Merkle
Tree. It is extended by appending leaves from left to right,
creating a balanced tree. After appending an app to the
tree, which is done in constant time, the root hash needs to
be re-built. Hence, insertion is O(log(n)). The tree provides
Proofs-of-Presence (PoPs) for inserted apps and Proofs-of-
Consistency (PoCos) which are able to show that any two
versions of the tree are consistent. This is given if one tree
is a subset of any later version of that tree. PoC and PoCo
checks can be done in O(log(n)). Unfortunately, in a Chron-
Tree PoCs and PoAs demand O(n) since the tree has to show
that an app is outdated or revoked.

To make PoCs O(log(n)) and to enable PoAs, we utilize a
second lexicographically ordered Merkle Tree [22, 17]. The

1149



Table 3: Application Transparency Actors and Their Benefits

Actor Benefits

Mobile User Targeted Attack Prevention - can be sure that they are treated equally to all other users.
App Developer Protect their apps against manipulations by app markets.
App Market Are able to provide cryptographic proofs for their correct behavior.
Log Provider Provide transparency for the app market ecosystem.
Auditor Monitor correct behavior of log providers and help to establish a foundation of trust in the AT ecosystem.

FixTree10 is organized as a binary search tree that stores
nodes in a way that an in-order traversal yields the certifi-
cates stored in the tree in lexicographic order of the certifi-
cates’ subjects. Insertion, PoC and PoA are O(log(n)) in
the average case.

In contrast to the ChronTree, the FixTree alone is not
able to provide consistency proofs in O(log(n)) since it does
not have the necessary append-only property. Therefore we
use a ChronTree/FixTree pair utilizing the advantages of
both trees to finally achieve PoPs, PoCs, PoAs and PoCos in
O(log(n)). This is done by inserting an app into the FixTree
first, and subsequently adding a tuple consisting of the app
and the freshly built root hash of the FixTree to the Chron-
Tree. One drawback of using a binary search tree as the
underlying data structure of the LexTree is that insertions
can unbalance and degrade the tree. We therefore employ
a Merkle Tree built up on a 2-3 tree as the underlying data
structure. We call this tree FixTree since it guarantees a bal-
anced tree for inserts in O(log(n)) and equally sized proofs
of O(log(n)) for all data in the tree. In contrast to the Lex-
Tree proposal, the data (i. e. the package information) is
contained only in the leaf nodes. Each leaf node for an app
has the form (package<ext>, (hv1, hv2, ...)) where package
is the unique packagename (e. g. com.google.android.gm)
of an app and < ext > identifies a device-, language- and
region-based app version11 – e. g. some apps are only avail-
able on certain device types, in certain languages and are
limited to specific geographic regions such as the U.S.. The
values (hv1, hv2, ...) are lists of SHA-256 checksums for the
corresponding package<ext> identifier consisting of differ-
ent chronological versions of an app. Hence, the checksum
lists store all app versions that are available for different de-
vices, languages and regions. Whenever an app is outdated
– since a newer version is available – an updated hash for
the app’s package<ext> identifier is appended to the corre-
sponding checksum list. The size of the list of chronological
versions of an app the FixTree keeps is bound by a constant
N . In other words, the FixTree keeps only N −1 chronolog-
ical versions of an app. The chronologically ordered list of
SHA-256 hashes for an app’s package<ext> identifier is uti-
lized as a revocation mechanism. Whenever an app’s version
should be revoked, a new (maybe null) checksum value for
the package<ext> identifier is added to the log. Hence, the
revoked version of an app is not totally removed from the log,
but marked as not being the most current version any longer.
In order to still be able to search efficiently in O(log(n)), the
non-leaf nodes hold the (lexicographic) minimum of the left-
most subtree and the maximum of the rightmost subtree.

Both the ChronTree and the FixTree are re-built every
MMD, which we propose to be around 30 minutes. An

10The FixTree is an extension of the LexTree [22] concept.
11If required, more information can be added to a package
name’s extension.

MMD of 30 minutes provides a buffer for capturing the app
publication state of the Play Market. Based on the apps we
crawled from Google Play, we found that around 12,000 new
apps or app updates are published in Google Play every day.
Updating the trees every 30 minutes results in 48 updates
of the tree every day. Every log update has to append an
average of 250 new apps to the current trees. We measured
the time our implementation requires to append new apps to
the trees. Our tests showed that 48 updates a day are easily
feasible from both a computing performance point of view
and with respect to the app publishing parameters Google
Play offers.

Construction of PoC.
Each rebuild of the FixTree potentially changes all PoCs

for apps in the FixTree. In order to make retrieving PoCs
as efficient as possible, the Merkle audit paths for each leaf
are built after every merge and kept in a key-value store
to make sure the FixTree does not need to be traversed for
every request.

Construction of PoA.
Given a hash h that is not included in the FixTree, a PoA

is constructed as follows (cf. Figure 2):

1. Search for h in the FixTree to find the closest leaf l
smaller than h.

2. Execute an in-order traversal starting from l to the
next leaf r to find the closest leaf greater than h (solid
path in Figure 2).

3. Supply Merkle audit paths for l and r.

Given the Merkle audit paths for l and r, a verifier can then
validate that h is absent in the FixTree as follows:

1. Check that l < h < r.

2. For the audit path for l, check that each node in the
path is either a right child or the parent is also included
in r’s audit path.

3. For r’s audit path: check that each node is a left child,
respectively.

One specific case is constructing the proofs for an element
that is smaller or greater than every element in the FixTree.
In those cases, the PoA consist of only one audit path of the
leftmost or rightmost node respectively.

7. DEPLOYMENT
We propose to operate multiple logs – ideally every app

market should operate its own log to avoid a single point of
failure but still provide transparency for mobile users.

1150



to root

common parent

h(n1||n2||l)

n1 n2 l

h(r||n3)

r n3

other subtree

h

Figure 2: Generating a Proof of Absence for h with
the adjacent nodes l and r

In this section, we show the applicability of AT for An-
droid apps by analyzing various deployment aspects. We
provide an open source implementation of our Application
Transparency framework, a working log with 2,145,973 An-
droid apps12 and a standalone app for proof verification.
The deployment is viable without any changes to the app
market. However, we also discuss a second deployment op-
tion in which the app market participates in the transparency
process. We classify these two deployment approaches as (1)
the Supportive App Market (SAM) scenario, where the mar-
ket actively submits its apps to (its own) AT log(s), and (2)
the Non-Supportive App Market (NSAM) scenario where
apps are submitted to AT log(s) by developers or others.
We apply the AT framework to the installation of new apps
and to the process of updating installed Android apps.

7.1 Adding Apps to the Log
Adding an app to one or multiple AT log providers is es-

sential to benefit from AT’s properties. Immediately after
receiving an app, the log provider issues a Signed Applica-
tion Timestamp (SAT) acting as a promise to add the app
to the next snapshot of the AT log and as a proof of the
point in time when the app was sent to the log provider.
After the MMD passed, all apps that received a SAT in the
last MMD interval are included into the next snapshot of
the log and all types of proofs for the apps can be requested
from the log. The FixTree’s leaf node structure (cf. Section
6.1) allows for the inclusion of multiple versions of an app
in a single AT log. Chronological updates of app versions
can simply be appended to the app version’s corresponding
list of SHA-256 values. Every (non)-developer is allowed
to submit apps to an AT log. While this does not prevent
fake submissions, the log’s properties make those submis-
sions transparent and public knowledge. Hence, (malicious)
fake submissions are publicly detectable and AT’s revoca-
tion mechanism (cf. Section 6) allows for the transparent
removal of unwanted apps from the log.

SAM Scenario: In case an app market is supportive
and submits all its apps to one or multiple log servers, the
inclusion of new apps or updates of existing apps is straight-

12This includes all apps we downloaded from Google Play as
well as apps installed on real world devices gathered by our
AT deployment (c.f. Section 8).

forward: Google Play, for example, runs malware detection
and other administrative tasks before a submitted app is
made available. Currently, this process usually takes be-
tween 60 minutes and two hours. Hence, Google Play could
easily submit apps to one or multiple logs without noticeably
extending the existing publishing period of an app.

NSAM Scenario: In case an app market is not sup-
portive, there are two alternative mechanisms to make apps
available to one or multiple AT log providers. Developers
who intend to make their app available in an AT log submit
their apps to the log(s) before making them publicly avail-
able. To make pushing an app to the AT logs as easy-as-
possible for app developers, we propose to include this step
into the app building process. Therefore, we extended the
Manifest.xml file of Android apps 13 and now allow devel-
opers to configure one or multiple AT log providers to which
the app should be pushed. Based on this configuration, we
implemented app pushing into the conventional app building
process to make app publishing transparent and easy-to-use
for developers. After packaging the app’s APK file with
all its compiled code and required resources, the app file’s
checksum is submitted to the configured AT log(s). The logs
then generate a SAT for the app and queue the app for in-
clusion into the log’s next snapshot 14. The SAT is sent back
to the developer. Next, the SAT is inserted into the app’s
APK file and finally signed with the developer’s signing key.
This procedure is transparent to developers and does not
unnecessarily draw out the conventional app building pro-
cess. To support developers and to provide a starting point
for the Application Transparency system for Android apps,
crawling app markets is a pragmatic approach.

7.2 Proof-Verification
The verification of cryptographic proofs is a vital part

of Application Transparency. In AT, a PoP and PoC or a
PoA is a set of two auditpaths that both have the length
log(n) with n being the number of apps in the log. The
auditpath length in our current log is 21 and the set of re-
quired proofs consist of 2∗21∗32 = 1344 bytes of auditpath
data. The average size of an Android app in our sample set
is 4,936,800 bytes. This gives an average Proof-To-Payload
ratio of 1344/4936800 = 0.027 %. Proofs are verified dur-
ing app installations or update requests. Hence, we suggest
synchronous security checks. Subsequently, proof-delivery
for the SAM and NSAM scenarios are discussed.

7.2.1 SAM Scenario
In case app markets support Application Transparency,

delivering proofs synchronously is straightforward. On every
MMD, app markets need to fetch current proofs for their
apps, cache them for the MMD period and deliver them to
their users for every app installation or update. Proofs are
then sent directly with the APK file. There are no privacy
issues or out-of-band connections which could slow down the
app installation process.

7.2.2 NSAM Scenario
In case app markets do not support Application Trans-

parency, users need to fetch proofs directly from their pre-
ferred log(s). As illustrated above, the Proof-To-Payload

13As long as the Manifest.xml file only contains valid XML,
Android will not reject apps.

14No longer than the log’s MMD

1151



ratio is rather small. Hence, synchronously fetching the
proof does not noticeably slow down the installation/updat-
ing process. To speed things up, our implementation triggers
proof-fetching as soon the packagename and version code of
an app are available, which happens before the download is
complete.

Additionally, the proof verification process can be split
into two more scenarios:

7.2.3 Android OS Integration
In case proof verification is integrated into the Android

OS, it is straightforward. As soon as the proof is available
(either delivered from Google Play or fetched directly from
an AT log provider), proof verification can be performed
within Android’s default app installation/update routine.
We implemented proof verification into Android’s “Verify
Apps” routine that is executed on installation and update.
Our implementation verifies a given set of AT proofs for an
app and communicates the verification result to the user.

7.2.4 Standalone App
In case proof verification is not integrated into the An-

droid OS, a standalone app can perform proof verification.
Similarly to conventional anti-virus apps on Android, our
app is triggered whenever a new app or an update for an
existing app is installed. Our app then fetches the proof
for the given app (update), verifies the proof and commu-
nicates the verification result to the user. To protect the
users’ privacy, we added a TOR opt-in feature to our proof-
verification app that allows users to hide their identity from
AT log providers.

7.3 Benefits over CT
While CT is used for the transparency of issued certifi-

cates, in AT we offer binary protection of the distributed
software packages. Due to the different attack models, AT
introduces new requirements resulting in the proposed mod-
ification of the proof concepts, but also an easier proof de-
ployment. Our proposed system takes advantage of the AT
requirements and offers following additional properties in
contrast to CT:

Easier Deployment.
Certificate Transparency relies on the certificate issuer or

owner to push a certificate to the CT log. This list en-
compasses multiple hundred CAs. As of today, only a few
CAs have committed to pushing future certificates to the
CT log [7]. However, the long term success of Certificate
Transparency crucially depends on the participation of all
important CAs which comprises a list of more than 100 com-
panies. In AT, app markets can decide whether they wish
to provide transparency and do not require the participation
of additional app markets. The participation of GooglePlay,
providing more than 90% of all installed apps15, would cover
most app installations in the wild. However, even if no app
market participated in the AT ecosystem, app developers
could start a bottom up approach and register their apps
with an AT log to protect their customers. As long as an
app is not present in any AT log, a PoA would be spread,

15The number is based on the meta information we gathered
with Zoner’s telemetry program.

while as soon as the app is present in a log, the PoA would be
replaced with a PoP, thus giving users transparency on a per
app basis. In CT, as long as no PoP is spread for a website,
users need to trust the log provider. Hence, CT’s security
features take full effect only when all SSL certificates are
pushed to one or multiple logs, while AT also offers benefits
to early adopters.

Synchronous Proof Validation.
While AT offers synchronous proof verification, the CT

project decided against it. Synchronous validations either
requires every web-server administrator to always provide
the current version of the proof for their website and deliver
it in-band during an SSL handshake, or it requires users to
fetch the proof out-of-band. Both options have enormous
disadvantages that discouraged the CT project from per-
forming synchronous proof verification. App installation,
on the other hand, is a relatively rare event and one which
takes more time, so the additional overhead of synchronously
verifying the proofs does not extend the installation process
notably for the users.

Additional Proof Features.
In addition to the Proof-of-Presence (similar to CT’ cer-

tificate proof) that enables app markets to cryptographically
prove that a presented app has actually been submitted to
a log, our system introduces new crucial features to prevent
the following attacks:

Withholding Apps Every query to an app market 16 which
does not return a positive result and the correspond-
ing PoP has to return a PoA – either provided by the
app market (SAM) or the AT log provider (NSAM)
– showing that the requested app has indeed never
been submitted to that market and the corresponding
log. In case of the targeted withholding of an app,
a PoA can not be provided, since the app is actually
present in the log (and the market) – i. e. a PoP ex-
ists – but was withheld only from the attacked user.
The non-existence of a PoA and the withholding of
the corresponding PoP makes the attack immediately
detectable.

Withholding Updates Every update query requires a PoC
– either provided by the app market (SAM) or from
the AT log provider (NSAM) – guaranteeing that the
offered application is the most current version and is
also issued to all other app market users.

8. EVALUATION
To evaluate AT, we implemented both the ChronTree and

FixTree, a standalone Android app that can verify AT proofs
for new apps and updates and an integration into Android’s
OS-level“Verify Apps” feature. We also deployed the system
in the NSAM scenario by integrating AT into the telemetry
feature of Zoner’s anti-virus app for Android.

Gathered Telemetry Data.
Over a period of four months from January 2014 to April

2014, we gathered the following meta information from 253,819

16A query is considered to be the full package name of an
app plus its extension value (cf. Section 6.1 for the AT log
structure).

1152



devices that participated in the telemetry program and who
gave their consent to anonymously analyze the data for our
research:

Pseudonym We assigned a 256-bit random pseudonym
to each device to protect the users’ privacy. The pseudonym
did not reveal any private information.

DeviceInfo We collected manufacturer- and device model
information as well as the installed Android version.

DeviceFlags We gathered three different flags for every
device: (1) Whether developer options were enabled, (2)
whether app installs from untrusted sources were allowed
and (3) whether USB debugging was enabled.

PackageInfo For every (pre-)installed app we gathered
the package name and version code.

PackageHashes For every (pre-)installed app we gath-
ered SHA256 checksums of the packages and their corre-
sponding signing keys.

AV-Result For every (pre-)installed app we collected the
AV detection result.

Results.
The telemetry program gathered the above meta infor-

mation. Whenever we found only one checksum value for a
<packagename, version> tuple across all devices, we treated
these findings as harmless, since everybody had the same bi-
nary installed and thus no tampered binaries were installed
for specific targets. However, when multiple checksums were
present across devices, we treated these findings as check-
sum conflicts. A checksum conflict can have different root
causes: (1) App developers compile different versions of an
app for different app markets (cf. Section 4.1), (2) apps
got repackaged to (benignly) add or remove certain features
from the original app or (3) apps are turned into malware
to mount (targeted) attacks. In all three cases, users would
benefit from AT’s transparency features. While most check-
sum conflicts we found fall into categories (1) and (2), in
combination with anti-virus software AT can help to assign
apps to categories (1) and (2) and to distinguish apps that
fall into category (3).

We collected information for 912,393 different Android
apps17. While 824,203 apps had no checksum conflicts, we
found 88,190 apps (10.7 %) with checksum conflicts as shown
in Table 4(a). Here we distinguish between three different
types of apps: (1) System apps signed with the same key as
the Android SDK, (2) vendor apps which were pre-installed
by the vendors and (3) third-party apps installed by the
user.

Since Google Play is the most important and most widely
used app market for Android, we chose this market as our
transparency baseline, i. e. we compared the apps’ check-
sums with the values we found in Google Play. Although
Google Play could theoretically have provided us with some
tampered apps when we crawled the market, for our further
analysis we assumed that Google Play played fair with us.
Table 4(b) shows the anti-virus results for the conflicts for
apps distributed by the Google Play store.

The checksum conflicts result from the usage of different
keys for different markets, app customization, or in the open
source case, different distributors. Another explanation for
conflicting checksums for apps signed by the original signing

17Each <packagename, version> tuple was treated as a single
entity.

key would be targeted attacks deployed by the original app
developer. Although this is highly unlikely in most cases and
we could not find supporting evidence, this circumstance re-
veals the lack of intransparency of current mobile app distri-
bution: Many of these cases cannot be fully assessed without
costly analysis of every suspicious application for malicious
behavior on a per app basis.

For the 5,445 apps for which we found conflicting check-
sums signed by multiple keys, our AV app yielded (partly)
positive malware detection results, i. e. for either all versions
or only some versions, the AV app tagged apps as either ad-
ware or other malware. 4,657 of these apps were tagged as
adware – for 760 apps the official Google Play store ver-
sion was tagged as adware and the non-official versions were
detected as non-adware. These apps pointed to tools that
remove ad libraries from existing apps and recompile the
original apps. 3,897 apps were detected as non-adware in
the original version, but were found to be adware whenever
signed by a different key. Hence, in these cases installing
apps from alternative markets or off-site resulted in catch-
ing adware on a device instead of installing the original app
version. 788 apps were detected as rootkits. In all cases, the
official Google Play store app versions were detected as non-
malware while off-site installs were malicious. These results
confirm previous findings [24]. In these cases AT would have
protected the users from accidentally installing malware on
their devices by informing them that they were dealing with
non-publicly known versions of an app.

8.1 Discussion
Analyzing AV telemetry meta-data of 253,819 real world

Android devices shed light on the current status of apps’
intransparency in the wild, demonstrated the need for an
effective tool that allows to verify apps’ authenticity and
confirmed the smooth deployability of AT. For 89.3% of the
apps we analyzed in the wild, we did not find suspicious
patterns. Hence, most of the installs in the wild are already
transparent although no“everything’s-logged”cryptographic
proof such as provided by AT is available. These installa-
tions directly benefit from an AT deployment and give users
and developers the certainty that they were not subject to
a targeted-and-stealthy attack by the app market.

However, also the remaining 10.7% installations for which
we found conflicting checksums would benefit from widespread
AT deployment. A huge portion of apps with conflicting
checksums resulted from the signing and packaging strate-
gies employed by many app developers (cf. Section 4.1). In
theses cases, having AT at hand would allow users to rely
on the authenticity of apps, as well as allowing developers
to make sure that users of AT do not accidentally install
tampered versions of their apps. A rather small fraction of
apps we found in the wild were tagged as malware by our
AV app. These cases would benefit from a widespread AT
deployment as well: We assume malware apps would not be
submitted to publicly available AT logs and hence would not
be valid installation candidates for users. If malware were
submitted to a log, in contrast to current malware detection,
tagging a malicious app as malware once and then (trans-
parently) removing the app from the AT logs by using AT’s
revocation mechanism (cf. Section 6.1) would immediately
protect all users of the AT infrastructure. Finally, we found
very few conflictingc checksums for which we currently can-
not be certain whether our findings are harmless or actually

1153



Table 4: Telemetry Program Results

(a) App Checksum Conflicts across all Devices

App-Type Amount

System Apps 8,632
Pre-install Vendor Apps 15,999
Third-party Apps (Google Play) 46,481
Third-party Apps (only other Markets) 17,078

(b) Google Play Apps with Checksum Conflicts

Signature Keys Result Amount

Same Key
Trojan.AndroidOS.Stealer.A 2
No Information 21,623

Various Keys

Permission Remover Service 2
Adware 4,657
Rootkits 788
Negative 5,241
No Information 4,265

malicious. While this is a limitation of our evaluation, it
urgently illustrates the problem of current app deployment:
There are cases in the wild that cannot be reliably assessed
with current tools. On the one hand these checksums look
suspicious, but on the other hand the limited capabilities
of current malware detection mechanisms make a final deci-
sion whether malicious apps were found or not a gambling
game. A widespread AT deployment would effectively dis-
close attackers that try to invisibly smuggle malicious apps
into markets. Consequently AV providers could focus their
malware detection efforts on the apps present in public AT
logs which eases the development of new, more effective off-
device detection mechanisms.

9. CONCLUSION
The installation of software is a security critical task and

the current centralized app market paradigm present in the
appified world is boon and bane together and offers power-
ful attackers a lot of very convenient ways to plant malicious
software on users’ devices. We illustrated parallels between
app markets and similar ecosystems that have already been
exploited by nation state adversaries and revealed the ur-
gency to equip app markets and other software reposito-
ries with an effective countermeasure. By analyzing sign-
ing and packaging strategies of 97% of the Android apps
in Google Play, we illustrate that current signing practices
directly threaten mobile security and indirectly make it al-
most impossible for app users to verify apps’ authenticity
with current tools. We found evidence that a handful of
signing keys, used to sign more than 7% of all apps, are not
under control of the actual developers and enable a handful
of app distribution providers to stealthily create malicious
updates. Additionally, we found that pushing different app
versions, signed by different signing keys – which leads to
different checksums across multiple markets – is a common
practice and makes apps’ authenticity verification even more
difficult.

We then presented the AT framework: an effective mecha-
nism to protect users and app developers against “targeted-
and-stealthy” app market attacks. We show that the central
software distribution paradigm makes the deployment of AT
easier compared to other transparency approaches such as
Certificate Transparency (CT). We discuss two deployment
paths and show that AT is easier to deploy than CT even
if app markets do not support AT. However, AT also pro-
vides better security compared to CT due to synchronous
proof validation and the availability of proofs of currency
and absence.

In an extensive field study we analyzed app metadata
from 253,819 real world Android devices that participated in
Zoner’ anti-virus telemetry program. We found that 90%
of all apps would directly benefit from AT by being able
to present “everything’s-logged” cryptographic proofs. How-
ever, also the remaining less transparent cases would benefit
significantly from AT. A huge fraction of the currently con-
flicting cases could be clarified by applying AT: The harm-
less conflicting apps would become apparent by submitting
them to AT logservers. Notably, we also found cases when
AT would have prevented users from (unwittingly) installing
malicious apps.

10. REFERENCES
[1] Android. Android dashboard. http://developer.

android.com/about/dashboards/index.html, Jan.
2014.

[2] Barrera, D., Clark, J., McCarney, D., and van
Oorschot, P. C. Understanding and improving app
installation security mechanisms through empirical
analysis of android. SPSM ’12.

[3] BlackHat, B. Android master key - bluebox black
hat talk. https://media.blackhat.com/us-13/
US-13-Forristal-Android-One-Root-to-Own-Them/

-All-Slides.pdf, Jan. 2014.

[4] Bluebox. Android master key - bluebox.
http://bluebox.com/corporate-blog/

bluebox-uncovers-android-master-key/, Jan. 2014.

[5] Chia, P. H., Yamamoto, Y., and Asokan, N. Is
this app safe?: A large scale study on application
permissions and risk signals. WWW ’12.

[6] d’Heureuse, N., Huici, F., Arumaithurai, M.,
Ahmed, M., Papagiannaki, K., and Niccolini, S.
What’s app?: A wide-scale measurement study of
smart phone markets. SIGMOBILE Mob. Comput.
Commun. Rev. (Nov. 2012).

[7] DigiCert. Digicert - certificate transparency.
http://www.digicert.com/news/

2013-09-24-certificate-transparency.htm, 2013.

[8] Eckersley, P. Sovereign key cryptography for
internet domains.
https://git.eff.org/?p=sovereign-keys.git;a=

blob;f=sovereign-key-design.txt;hb=HEAD, 2011.

[9] Felt, A. P., Chin, E., Hanna, S., Song, D., and
Wagner, D. Android permissions demystified. CCS
’11.

[10] Felt, A. P., Ha, E., Egelman, S., Haney, A.,
Chin, E., and Wagner, D. Android permissions:

1154

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
https://media.blackhat.com/us-13/US-13-Forristal-Android-One-Root-to-Own-Them/-All-Slides.pdf
https://media.blackhat.com/us-13/US-13-Forristal-Android-One-Root-to-Own-Them/-All-Slides.pdf
https://media.blackhat.com/us-13/US-13-Forristal-Android-One-Root-to-Own-Them/-All-Slides.pdf
http://bluebox.com/corporate-blog/bluebox-uncovers-android-master-key/
http://bluebox.com/corporate-blog/bluebox-uncovers-android-master-key/
http://www.digicert.com/news/2013-09-24-certificate-transparency.htm
http://www.digicert.com/news/2013-09-24-certificate-transparency.htm
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD


User attention, comprehension, and behavior. SOUPS
’12.

[11] Gibler, C., Stevens, R., Crussell, J., Chen, H.,
Zang, H., and Choi, H. Adrob: Examining the
landscape and impact of android application
plagiarism. MobiSys ’13.

[12] Google. Android and security.
http://googlemobile.blogspot.de/2012/02/

android-and-security.html, Feb. 2012.

[13] Google. Android app signing. http://developer.
android.com/tools/publishing/app-signing.html,
May 2014.

[14] Grace, M., Zhou, Y., Zhang, Q., Zou, S., and
Jiang, X. Riskranker: Scalable and accurate zero-day
android malware detection. MobiSys ’12.

[15] Greenwald, G. No Place to Hide: Edward Snowden,
the NSA and the Surveillance State. Penguin Books
Limited, 2014.

[16] Haber, S., and Stornetta, W. S. How to
time-stamp a digital document. CRYPTO ’90.

[17] Kim, T. H.-J., Huang, L.-S., Perring, A.,
Jackson, C., and Gligor, V. Accountable key
infrastructure (aki): A proposal for a public-key
validation infrastructure. WWW ’13.

[18] Laurie, B., and Kasper, E. Revocation
transparency, 2013.

[19] Laurie, B., Langley, A., and Kasper, E. RFC
6962: Certificate transparency, June 2013.

[20] Petsas, T., Papadogiannakis, A., Polychronakis,
M., Markatos, E. P., and Karagiannis, T. Rise of
the planet of the apps: A systematic study of the
mobile app ecosystem. IMC ’13.

[21] Rastogi, V., Chen, Y., and Jiang, X.
Droidchameleon: Evaluating android anti-malware
against transformation attacks. ASIA CCS ’13.

[22] Ryan, M. D. Enhanced certificate transparency and
end-to-end encrypted mail. NDSS 2014.

[23] Vasco.com. http://www.vasco.com/company/about_
vasco/press_room/news_archive/2011/news_

diginotar_reports_security_incident.aspx, 2011.

[24] Vidas, T., and Christin, N. Sweetening android
lemon markets: Measuring and combating malware in
application marketplaces. CODASPY ’13.

[25] Wu, L., Grace, M., Zhou, Y., Wu, C., and Jiang,
X. The impact of vendor customizations on android
security. CCS ’13.

[26] Yan, L. K., and Yin, H. Droidscope: Seamlessly
reconstructing the os and dalvik semantic views for
dynamic android malware analysis. USENIX
Security’12.

[27] Zhou, W., Zhang, X., and Jiang, X. Appink:
Watermarking android apps for repackaging
deterrence. ASIA CCS ’13.

[28] Zhou, W., Zhou, Y., Jiang, X., and Ning, P.
Detecting repackaged smartphone applications in
third-party android marketplaces.

[29] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X.
Hey, you, get off of my market: Detecting malicious
apps in official and alternative Android markets. In
Proceedings of the 19th Annual Network & Distributed
System Security Symposium (Feb. 2012).

1155

http://googlemobile.blogspot.de/2012/02/android-and-security.html
http://googlemobile.blogspot.de/2012/02/android-and-security.html
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
http://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
http://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx
http://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx

	Introduction
	Background
	App Signing on Android
	App Publishing in Google Play
	Android App Installation and Updates
	Certificate Transparency
	Limitations


	Related Work
	App Signing Practices
	Alternative Markets
	Discussion

	Threat Model
	Application Transparency
	Log Structure

	Deployment
	Adding Apps to the Log
	Proof-Verification
	SAM Scenario
	NSAM Scenario
	Android OS Integration
	Standalone App

	Benefits over CT

	Evaluation
	Discussion

	Conclusion
	References



