
Why Eve and Mallory Love Android:
An Analysis of Android SSL (In)Security

Sascha Fahl, Marian Harbach,
Thomas Muders, Matthew Smith

Distributed Computing & Security Group
Leibniz University of Hannover

Hannover, Germany
{fahl,harbach,muders,smith}@dcsec.uni-

hannover.de

Lars Baumgärtner, Bernd Freisleben
Department of Math. & Computer Science

Philipps University of Marburg
Marburg, Germany
{lbaumgaertner,

freisleb}@informatik.uni-marburg.de

ABSTRACT
Many Android apps have a legitimate need to communicate
over the Internet and are then responsible for protecting po-
tentially sensitive data during transit. This paper seeks to
better understand the potential security threats posed by
benign Android apps that use the SSL/TLS protocols to
protect data they transmit. Since the lack of visual secu-
rity indicators for SSL/TLS usage and the inadequate use
of SSL/TLS can be exploited to launch Man-in-the-Middle
(MITM) attacks, an analysis of 13,500 popular free apps
downloaded from Google’s Play Market is presented.

We introduce MalloDroid, a tool to detect potential vul-
nerability against MITM attacks. Our analysis revealed that
1,074 (8.0%) of the apps examined contain SSL/TLS code
that is potentially vulnerable to MITM attacks. Various
forms of SSL/TLS misuse were discovered during a further
manual audit of 100 selected apps that allowed us to suc-
cessfully launch MITM attacks against 41 apps and gather
a large variety of sensitive data. Furthermore, an online sur-
vey was conducted to evaluate users’ perceptions of certifi-
cate warnings and HTTPS visual security indicators in An-
droid’s browser, showing that half of the 754 participating
users were not able to correctly judge whether their browser
session was protected by SSL/TLS or not. We conclude
by considering the implications of these findings and discuss
several countermeasures with which these problems could be
alleviated.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Network]: Network
Operations—Public Networks; H.3.5 [Information Stor-
age and Retrieval]: Online Information Services—Data
Sharing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$10.00.

General Terms
Security, Human Factors

Keywords
Android, Security, Apps, MITMA, SSL

1. INTRODUCTION
Currently, Android is the most used smartphone oper-

ating system in the world, with a market share of 48%1

and over 400,000 applications (apps) available in the Google
Play Market2, almost doubling the number of apps in only
six months.3 Android apps have been installed over 10 bil-
lion times 4 and cover a vast range of categories from games
and entertainment to financial and business services. Unlike
the“walled garden”approach of Apple’s App Store, Android
software development and the Google Play Market are rel-
atively open and unrestricted. This offers both developers
and users more flexibility and freedom, but also creates sig-
nificant security challenges.

The coarse permission system [9] and over-privileging of
applications [16] can lead to exploitable applications. Con-
sequently, several efforts have been made to investigate priv-
ilege problems in Android apps [17, 9, 4, 3, 18]. Enck et al.
introduced TaintDroid [7] to track privacy-related informa-
tion flows to discover such (semi-)malicious apps. Bugiel et
al. [3] showed that colluding malicious apps can facilitate in-
formation leakage. Furthermore, Enck et al. analyzed 1,100
Android apps for malicious activity and detected widespread
use of privacy-related information such as IMEI, IMSI, and
ICC-ID for“cookie-esque” tracking. However, no other mali-
cious activities were found, in particular no exploitable vul-
nerabilities that could have lead to malicious control of a
smartphone were observed [8].

In this paper, instead of focusing on malicious apps, we in-
vestigate potential security threats posed by benign Android
apps that legitimately process privacy-related user data, such
as log-in credentials, personal documents, contacts, financial
data, messages, pictures or videos. Many of these apps com-
municate over the Internet for legitimate reasons and thus
request and require the INTERNET permission. It is then

1http://android-ssl.org/s/1
2http://android-ssl.org/s/2
3http://android-ssl.org/s/3
4http://android-ssl.org/s/4

50

http://android-ssl.org/s/1
http://android-ssl.org/s/2
http://android-ssl.org/s/3
http://android-ssl.org/s/4

necessary to trust that the app adequately protects sensitive
data when transmitting via the Internet.

The most common approach to protect data during com-
munication on the Android platform is to use the Secure
Sockets Layer (SSL) or Transport Layer Security (TLS) pro-
tocols.5 To evaluate the state of SSL use in Android apps,
we downloaded 13,500 popular free apps from Google’s Play
Market and studied their properties with respect to the us-
age of SSL. In particular, we analyzed the apps’ vulnerabil-
ities against Man-in-the-Middle (MITM) attacks due to the
inadequate or incorrect use of SSL.

For this purpose, we created MalloDroid, an Androguard6

extension that performs static code analysis to a) analyze the
networking API calls and extract valid HTTP(S) URLs from
the decompiled apps; b) check the validity of the SSL cer-
tificates of all extracted HTTPS hosts; and c) identify apps
that contain API calls that differ from Android’s default
SSL usage, e. g., contain non-default trust managers, SSL
socket factories or hostname verifiers with permissive veri-
fication strategies. Based on the results of the static code
analysis, we selected 100 apps for manual audit to investi-
gate various forms of SSL use and misuse: accepting all SSL
certificates, allowing all hostnames regardless of the certifi-
cate’s Common Name (CN), neglecting precautions against
SSL stripping, trusting all available Certificate Authorities
(CAs), not using SSL pinning, and misinforming users about
SSL usage.

Furthermore, we studied the visibility and awareness of
SSL security in the context of Android apps. In Android, the
user of an app has no guarantee that an app uses SSL and
also gets no feedback from the Android operating system
whether SSL is used during communication or not. It is
entirely up to the app to use SSL and to (mis)inform the user
about the security of the connection. However, even when
apps present warnings and security indicators, users need
to see and interpret them correctly. The users’ perceptions
concerning these warnings and indicators were investigated
in an online survey. Finally, several countermeasures that
could help to alleviate the problems discovered in the course
of our work are discussed.

The results of our investigations can be summarized as
follows:

• 1,074 apps contain SSL specific code that either ac-
cepts all certificates or all hostnames for a certificate
and thus are potentially vulnerable to MITM attacks.

• 41 of the 100 apps selected for manual audit were vul-
nerable to MITM attacks due to various forms of SSL
misuse.

• The cumulative install base of the apps with confirmed
vulnerabilities against MITM attacks lies between 39.5
and 185 million users, according to Google’s Play Mar-
ket.7 This number includes 3 apps with install bases
between 10 and 50 million users each.

5Android supports both SSL and TLS; for brevity, we will
refer to both protocols as SSL. The issues described in this
paper affect both SSL and TLS in the same way.
6http://code.google.com/p/androguard/
7Google’s Play Market only gives a range within which the
number of installed apps lies based on the installs from the
Play Market. The actual number is likely to be larger, since
alternative app markets for Android also contribute to the
install base.

• From these 41 apps, we were able to capture credentials
for American Express, Diners Club, Paypal, bank ac-
counts, Facebook, Twitter, Google, Yahoo, Microsoft
Live ID, Box, WordPress, remote control servers, arbi-
trary email accounts, and IBM Sametime, among oth-
ers.

• We were able to inject virus signatures into an anti-
virus app to detect arbitrary apps as a virus or disable
virus detection completely.

• It was possible to remotely inject and execute code in
an app created by a vulnerable app-building frame-
work.

• 378 (50.1%) of the 754 Android users participating in
the online survey did not judge the security state of a
browser session correctly.

• 419 (55.6%) of the 754 participants had not seen a
certificate warning before and typically rated the risk
they were warned against as medium to low.

The paper is organized as follows. Section 2 gives back-
ground information on how SSL is used in Android and how
MITM attacks can be launched. Section 3 discusses related
work. In Section 4, the usage of SSL in 13,500 Android apps
is investigated using MalloDroid. Section 5 presents the re-
sults of manual audits of 100 selected apps to determine
what kind of data is actually sent via the possibly broken
SSL communication channels. The limitations of our app
analysis are discussed in Section 6. Section 7 describes the
results of our online survey to investigate the users’ percep-
tions concerning certificate warnings and secure connections
in their Android browsers. In Section 8, possible counter-
measures against unencrypted traffic and SSL misuse are
discussed. Section 9 concludes the paper and outlines direc-
tions for future work.

2. BACKGROUND
The focus of our investigation is the inadequate use of SSL

in Android apps. In this section, we give a brief overview of
how SSL is used in Android and how MITM attacks can be
launched against broken SSL connections in the context of
this paper.

2.1 SSL
The Secure Sockets Layer (SSL) and its successor, Trans-

port Layer Security (TLS), are cryptographic protocols that
were introduced to protect network communication from
eavesdropping and tampering. To establish a secure con-
nection, a client must securely gain access to the public key
of the server. In most client/server setups, the server ob-
tains an X.509 certificate that contains the server’s public
key and is signed by a Certificate Authority (CA). When the
client connects to the server, the certificate is transferred to
the client. The client must then validate the certificate [2].
However, validation checks are not a central part of the SSL
and X.509 standards. Recommendations are given, but the
actual implementation is left to the application developer.

The basic validation checks include: a) does the subject
(CN) of the certificate match the destination selected by
the client?; b) is the signing CA a trusted CA?; c) is the
signature correct?; and d) is the certificate valid in terms of

51

http://code.google.com/p/androguard/

its time of expiry? Additionally, revocation of a certificate
and its corresponding certificate chain should be checked,
but downloading Certificate Revocation Lists (CRLs) or us-
ing the Online Certificate Status Protocol (OCSP, [1]) is
often omitted. The open nature of the standard specifica-
tion has several pitfalls, both on a technical and a human
level. Therefore, our evaluations in the remainder of this pa-
per are based on examining the four validation checks listed
above.

2.2 Android & SSL
The Android 4.0 SDK offers several convenient ways to

access the network. The java.net, javax.net, android.net
and org.apache.http packages can be used to create (server)
sockets or HTTP(S) connections. The org.webkit package
provides access to web browser functionality. In general, An-
droid allows apps to customize SSL usage – i. e., developers
must ensure that they use SSL correctly for the intended us-
age and threat environment. Hence, the following (mis-)use
cases can arise and can cause an app to transmit sensitive
information over a potentially broken SSL channel:

Trusting all Certificates. The TrustManager interface can
be implemented to trust all certificates, irrespective of
who signed them or even for what subject they were
issued.

Allowing all Hostnames. It is possible to forgo checks of
whether the certificate was issued for this address or
not, i. e., when accessing the server example.com, a cer-
tificate issued for some-other-domain.com is accepted.

Trusting many CAs. This is not necessarily a flaw, but
Android 4.0 trusts 134 CA root certificates per de-
fault. Due to the attacks on several CAs in 2011, the
problem of the large number of trusted CAs is actively
debated.8

Mixed-Mode/No SSL. App developers are free to mix
secure and insecure connections in the same app or
not use SSL at all. This is not directly an SSL issue,
but it is relevant to mention that there are no outward
signs and no possibility for a common app user to check
whether a secure connection is being used. This opens
the door for attacks such as SSL stripping [12, 13] or
tools like Firesheep.9

On the other hand, Android’s flexibility in terms of SSL
handling allows advanced features to be implemented. One
important example is SSL Pinning10, in which either a (smal-
ler) custom list of trusted CAs or even a custom list of spe-
cific certificates is used. Android does not offer SSL pinning
capabilities out of the box. However, it is possible to create
a custom trust manager to implement SSL pinning.11

The use of an SSL channel, even under the conditions
described above, is still more secure than using only plain
HTTP against a passive attacker. An active MITM attack
is required for an attacker to subvert an SSL channel and is
described below.

8http://android-ssl.org/s/5
9https://codebutler.com/firesheep

10http://android-ssl.org/s/6
11http://android-ssl.org/s/7

2.3 MITM Attack
In a MITM attack (MITMA), the attacker is in a position

to intercept messages sent between communication partners.
In a passive MITMA, the attacker can only eavesdrop on
the communication (attacker label: Eve), and in an active
MITMA, the attacker can also tamper with the communi-
cation (attacker label: Mallory). MITMAs against mobile
devices are somewhat easier to execute than against tradi-
tional desktop computers, since the use of mobile devices
frequently occurs in changing and untrusted environments.
Specifically, the use of open access points [11] and the evil
twin attack [21] make MITMAs against mobile devices a
serious threat.

SSL is fundamentally capable of preventing both Eve and
Mallory from executing their attacks. However, the cases
described above open up attack vectors for both Eve and
Mallory. Trivially, the mixed-mode/no SSL case allows Eve
to eavesdrop on non-protected communication.

SSL stripping is another method by which a MITMA can
be launched against an SSL connection, exploiting apps that
use a mix of HTTP and HTTPS. SSL stripping relies on the
fact that many SSL connections are established by clicking
on a link in or being redirected from a non-SSL-protected
site. During SSL stripping, Mallory replaces https:// links
in the non-protected sites with insecure http:// links. Thus,
unless the user notices that the links have been tampered
with, Mallory can circumvent SSL protection altogether.
This attack is mainly relevant to browser apps or apps using
Android’s WebView.

3. RELATED WORK
To the best of our knowledge, there is no in-depth study

of SSL usage and security on Android phones to date. Thus,
the discussion of related work is divided into two parts: re-
lated work concerning Android security and a selection of
SSL security work relevant for this paper.

3.1 Android Security
There have been several efforts to investigate Android per-

missions and unwanted or malicious information flows, such
as the work presented by Enck et al. [9, 7], Porter Felt et al.
[17, 16], Davi et al. [4], Bugiel et al. [3], Nauman et al. [15]
and Egners et al. [6]. While these papers show how permis-
sions can be abused and how this abuse can be prevented,
their scope does not include the study of SSL issues, and
the proposed countermeasures do not mitigate the threats
presented in this paper. We present vulnerabilities based on
weaknesses in the design and use of SSL and HTTPS in An-
droid apps. Since the permissions used by the apps during
SSL connection establishment are legitimate and necessary,
the current permissions-based countermeasures would not
help.

There are several good overviews of the Android security
model and threat landscape, such as Vidas et al. [25], Sha-
batai [19] et al. and Enck et al. [10, 8]. These papers do
not discuss the vulnerability of SSL or HTTPS on Android.
Enck et al. [8] does mention that some apps use sockets di-
rectly, bearing the potential for vulnerabilities, but no mali-
cious use was found (cf. [8], Finding 13). Our investigation
shows that there are several SSL-related vulnerabilities in
Android apps, endangering millions of users.

McDaniel et al. [14] and Zhou et al. [26] also mainly fo-
cus on malicious apps in their work on the security issues

52

example.com
some-other-domain.com
http://android-ssl.org/s/5
https://codebutler.com/firesheep
http://android-ssl.org/s/6
http://android-ssl.org/s/7

associated with the app market model of software deploy-
ment. The heuristics of DroidRanger [26] could be extended
to detect the vulnerabilities uncovered in our work.

3.2 SSL Security
A good overview of current SSL problems can be found in

Marlinspike’s Black Hat talks [12, 13]. The talks cover is-
sues of security indicators, Common Name (CN) mismatches
and the large number of trusted CAs and intermediate CAs.
Marlinspike also introduces the SSL stripping attack. The
fact that many HTTPS connections are initiated by clicking
a link or via redirects is particularly relevant for mobile de-
vices, since the MITMA needed for SSL stripping is easier
to execute [21, 11] and the visual indicators are hard to see
on mobile devices.

Shin et al. [20] study the problem of SSL stripping for
desktop browsers and present a visual-security-cue-based ap-
proach to hinder SSL stripping in this environment. They
also highlight the particular problem of this type of attack
in the mobile environment and suggest that it should be
studied in more detail.

Egelman et al. [5] and Sunshine et al. [24] both study
the effectiveness of browser warnings, showing that their ef-
fectiveness is limited and that there are significant usability
issues. Although both of these studies were conducted in a
desktop environment, the same caveats need to be consid-
ered for mobile devices. In this paper, we conduct a first
online survey to gauge the awareness and effectiveness of
browser certificate warnings and HTTPS visual security in-
dicators on Android.

4. EVALUATING ANDROID SSL USAGE
Our study of Android SSL security encompasses popular

free apps from Google’s Play Market. Overall, we inves-
tigated 13,500 applications. We built MalloDroid, an ex-
tension of the Androguard reverse engineering framework,
to automatically perform the following steps of static code
analysis:

Permissions. MalloDroid checks which apps request the
INTERNET permission, which apps actually contain
INTERNET permission-related API calls and which
apps additionally request and use privacy-related per-
missions (cf. [16]).

Networking API Calls. MalloDroid analyzes the use of
HTTP transport and Non-HTTP transport (e. g., di-
rect socket connections).

HTTP vs HTTPS. MalloDroid checks the validity of
URLs found in apps and groups the apps into HTTP
only, mixed-mode (HTTP and HTTPS) and HTTPS
only.

HTTPS Available. MalloDroid tries to establish a secure
connection to HTTP URLs found in apps.

Deployed Certificates. MalloDroid downloads and eval-
uates SSL certificates of hosts referenced in apps.

SSL Validation. MalloDroid examines apps with respect
to inadequate SSL validation (e. g., apps containing
code that allows all hostnames or accepts all certifi-
cates).

12,534 (92.84%) of the apps in our test set request the
network permission android.permission.INTERNET. 11,938
(88.42%) apps actually perform networking related API calls.
6,907 (51.16%) of the apps in our sample use the INTER-
NET permission in addition to permissions to access privacy
related information such as the users’ calendars, contacts,
browser histories, profile information, social streams, short
messages or exact geographic locations. This subset of apps
has the potential to transfer privacy-related information via
the Internet. This subset does not include apps such as
banking, business, email, social networking or instant mes-
saging apps that intrinsically contain privacy-relevant infor-
mation without requiring additional permissions.

We found that 91.7% of all networking API calls are re-
lated to HTTP(S). Therefore, we decided to focus our fur-
ther analysis on the usage of HTTP(S). To find out whether
an app communicates via HTTP, HTTPS, or both, Mal-
loDroid analyzes HTTP(S) specific API calls and extracts
URLs from the decompiled apps.

4.1 HTTP vs. HTTPS
MalloDroid extracted 254,022 URLs. It can be configured

to remove certain types of URLs for specific analysis. For
this study, we removed 58,617 URLs pointing to namespace
descriptors and images, since these typically are not used to
transmit sensitive user information. The remaining 195,405
URLs pointed to 25,975 unique hosts. 29,685 of the URLs
(15.2%) pointing to 1,725 unique hosts (6.6%) are HTTPS
URLs. We further analyzed how many of the hosts refer-
enced in HTTP URLs could also have been accessed using
HTTPS.

76,435 URLs (39.1%) pointing to 4,526 hosts (17.4%) al-
lowed a valid HTTPS connection to be established, using
Android’s default trust roots and validation behavior of cur-
rent browsers. This means that 9,934 (73.6%) of all 13,500
tested apps could have used HTTPS instead of HTTP with
minimal effort by adding a single character to the target
URLs. We found that 6,214 (46.0%) of the apps contain
HTTPS and HTTP URLs simultaneously and 5,810 (43.0%)
do not contain HTTPS URLs at all. Only 111 apps (0.8%)
exclusively contained HTTPS URLs.

For a more detailed investigation, we looked at the top
50 hosts, ranked by the number of occurrences. This group
mainly consists of advertising companies and social network-
ing sites. These two categories account for 37.9% of the total
URLs found, and the hosts are contained in 9,815 (78.3%)
of the apps that request the INTERNET permission.

Table 1 presents an overview of the top 10 hosts. The
URLs pointing to the these hosts suggest they are often
used for Web Service API calls, authentication and fetch-
ing/sending user or app information. Especially in the case
of ad networks that collect phone identifiers and geoloca-
tions [7] and social networks that transport user-generated
content, the contained information is potentially sensitive.

34 of the top 50 hosts offer all their API calls via HTTPS,
but none is accessed exclusively via HTTPS. Of all the URLs
pointing to the top 50 hosts, 22.1% used HTTPS, 61.0%
could have used HTTPS by substituting http:// with
https://, and 16.9% had to use HTTP because HTTPS was
not available. The hosts facebook.com and tapjoyads.com

are positive examples, since the majority of the URLs we
found for these two hosts already use HTTPS.

53

facebook.com
tapjoyads.com

Table 1: The top 10 hosts used in all extracted URLs
and their SSL availability, total number of URLs and
number of HTTPS URLs pointing to that host.
Host has SSL # URLs # HTTPS
market.android.com X 6,254 3,217
api.airpush.com X 5,551 0
a.admob.com X 4,299 0
ws.tapjoyads.com X 3,410 3,399
api.twitter.com X 3,220 768
data.flurry.com X 3,156 1,578
data.mobclix.com X 2,975 0
ad.flurry.com X 2,550 0
twitter.com X 2,410 129
graph.facebook.com X 2,141 1,941

4.2 Deployed SSL Certificates
To analyze the validity of the certificates used by HTTPS

hosts, we downloaded the SSL certificates for all HTTPS
hosts extracted from our app test set, yielding 1,887 unique
SSL certificates. Of these certificates, 162 (8.59%) failed
the verification of Android’s default SSL certificate verifica-
tion strategies, i. e., 668 apps contain HTTPS URLs pointing
to hosts with certificates that could not be validated with
the default strategies. 42 (2.22%) of these certificates failed
SSL verification because they were self-signed, i. e., HTTPS
links to self-signed certificates are included in 271 apps. 21
(1.11%) of these certificates were already expired, i. e., 43
apps contain HTTPS links to hosts with expired SSL cer-
tificates.

For hostname verification, we applied two different strate-
gies that are also available in Android: the BrowserCom-
patHostnameVerifier12 and the StrictHostnameVerifier13

strategy. We found 112 (5.94%) certificates that did not
pass strict hostname verification, of which 100 certificates
also did not pass the browser compatible hostname verifica-
tion. Mapping these certificates to apps revealed that 332
apps contained HTTPS URLs with hostnames failing the
BrowserCompatHostnameVerifier strategy.

Overall, 142 authorities signed 1,887 certificates. For 45
(2.38%) certificates, no valid certification paths could be
found, i. e., these certificates were signed by authorities not
reachable via the default trust anchors. These certificates
are used by 46 apps. All in all, 394 apps include HTTPS
URLs for hosts that have certificates that are either expired,
self-signed, have mismatching CNs or are signed by non-
default-trusted CAs.

4.3 Custom SSL Validation
Using MalloDroid, we found 1,074 apps (17.28% of all apps

that contain HTTPS URLs) that include code that either
bypasses effective SSL verification completely by accepting
all certificates (790 apps) or that contain code that accepts
all hostnames for a certificate as long as a trusted CA signed
the certificate (284 apps).

While an app developer wishing to accept all SSL certifi-
cates must implement the TrustManager interface and/or
extend the SSLSocketFactory class, allowing all hostnames
only requires the use of the org.apache.http.conn.ssl.All
owAllHostnameVerifier that is included in 453 apps. Addi-

12http://android-ssl.org/s/8
13http://android-ssl.org/s/9

tionally, MalloDroid found a FakeHostnameVerifier, Naive-

HostnameVerifier and AcceptAllHostnameVerifier class
that can be used in the same way.

To understand how apps use “customized” SSL implemen-
tations, we searched for apps that contain non-default trust
managers, SSL socket factories and hostname verifiers dif-
fering from the BrowserCompatHostnameVerifier strategy.
We found 86 custom trust managers and SSL socket facto-
ries in 878 apps. More critically, our analysis also discovered
22 classes implementing the TrustManager interface and 16
classes extending the SSLSocketFactory that accept all SSL
certificates. Table 2 shows which broken trust managers and
SSL socket factories were found.

Table 2: Trust Managers & Socket Factories that
trust all certificates (suffixes omitted to fit the page)

Trust Managers SSL Socket Factories
AcceptAllTrustM AcceptAllSSLSocketF

AllTrustM AllTrustingSSLSocketF

DummyTrustM AllTrustSSLSocketF

EasyX509TrustM AllSSLSocketF

FakeTrustM DummySSLSocketF

FakeX509TrustM EasySSLSocketF

FullX509TrustM FakeSSLSocketF

NaiveTrustM InsecureSSLSocketF

NonValidatingTrustM NonValidatingSSLSocketF

NullTrustM NaiveSslSocketF

OpenTrustM SimpleSSLSocketF

PermissiveX509TrustM SSLSocketFUntrustedCert

SimpleTrustM SSLUntrustedSocketF

SimpleX509TrustM TrustAllSSLSocketF

TrivialTrustM TrustEveryoneSocketF

TrustAllManager NaiveTrustManagerF

TrustAllTrustM LazySSLSocketF

TrustAnyCertTrustM UnsecureTrustManagerF

UnsafeX509TrustM

VoidTrustM

This small number of critical classes affects a large num-
ber of apps. Many of the above classes belong to libraries
and frameworks that are used by many apps. 313 apps con-
tained calls to the NaiveTrustManager class that is provided
by a crash report library. In 90 apps, MalloDroid found the
NonValidatingTrustManager class provided by an SDK for
developing mobile apps for different platforms with just a
single codebase. The PermissiveX509TrustManager, found
in a library for sending different kinds of push notifications
to Android devices, is included in 76 apps. Finally, in 78
apps, MalloDroid found a SSLSocketFactory provided by a
developer library that accepts all certificates. The library is
intended to support developers to write well designed soft-
ware and promotes itself as a library for super-easy and ro-
bust networking. Using any of the above Trust Managers or
Socket Factories results in the app trusting all certificates.

5. MITMA STUDY
The static code analysis presented above only shows the

potential for security problems. The fact that code for in-
secure SSL is present in an app does not necessarily mean
that it is used or that sensitive information is passed along it.
Even more detailed automated code analysis, such as control
flow analysis, data flow analysis, structural analysis and se-
mantic analysis cannot guarantee that all uses are correctly

54

http://android-ssl.org/s/8
http://android-ssl.org/s/9

identified [8]. Thus, we decided to conduct a more detailed
manual study to find out what sort of information is actually
sent via these potentially broken SSL communication chan-
nels, by installing apps on a real phone and executing an ac-
tive MITMA against the apps. For this part of the study, we
narrowed our search down to apps from the Finance, Busi-
ness, Communication, Social and Tools categories, where we
suspected a higher amount of privacy relevant information
and a higher motivation to protect the information. In this
test set, there are 266 apps containing broken SSL or host-
name verifiers (Finance: 45, Social: 94, Communication: 49,
Business: 60, Tools: 18). We ranked these apps based on
their number of downloads and selected the top 100 apps
for manual auditing. Additionally, we cherry-picked 10 high
profile apps (large install base, popular services) that con-
tained no SSL-related API calls but contained potentially
sensitive information, to see whether this information was
actually sent in the clear or whether some protection mech-
anism other than SSL was involved.

5.1 Test Environment
For the manual app auditing, we used a Samsung Galaxy

Nexus smartphone with Android 4.0 Ice Cream Sandwich.
We installed the potentially vulnerable apps on the phone
and set up a WiFi access point with a MITM SSL proxy.
Depending on the vulnerability to be examined, we equipped
the SSL proxy either with a self-signed certificate or with
one that was signed by a trusted CA, but for an unrelated
hostname.

Of the 100 apps selected for manual audit, 41 apps proved
to have exploitable vulnerabilities. We could gather bank ac-
count information, payment credentials for PayPal, Ameri-
can Express and others. Furthermore, Facebook, email and
cloud storage credentials and messages were leaked, access to
IP cameras was gained and control channels for apps and re-
mote servers could be subverted. According to Google’s Play
Market, the combined install base of the vulnerable apps in
our test set of 100 apps was between 39.5 and 185 million
users at the time of writing. In the following, we briefly
discuss our findings to illustrate the scope of the problem.

5.2 Trusting All Certificates
21 apps among the 100 selected apps were vulnerable to

this attack. We gave our MITMA proxy a self-signed cer-
tificate for the attack. The apps leaked information such
as login credentials, webcam access or banking data. One
noteworthy contender was a generic online banking app. The
app uses separate classes for each bank containing different
trust manager implementations. 24 of the 43 banks sup-
ported were not protected from our MITMA. The app also
leaks login credentials for American Express, Diners Club
and Paypal. The Google Play Market reports an install base
between 100,000 and half a million users. A further app vul-
nerable to this attack offers instant messaging for the Win-
dows Live Messenger service. The app has an install base
of 10 to 50 million users and is listed in the top 20 apps for
the communication category in the Google Play Market (as
of April 30th, 2012). Username and password are both sent
via a broken SSL channel and were sniffed during our attack.
This effectively gives an attacker full access to a Windows
Live account that can be used for email, messaging or Mi-
crosoft’s SkyDrive cloud storage. We also found a browser
with an install base between 500,000 and one million users

that trusts all certificates. The browser does not correctly
handle SSL at all, i. e., it accepts an arbitrary certificate for
every website the user visits and hence leaks whatever data
the user enters. All three apps do not provide any SSL con-
trol or configuration options for the user. None of the other
apps vulnerable to this attack showed warning messages to
the user while the MITMA was being executed.

5.3 Allowing All Hostnames
Next, we found a set of 20 apps that accepted certificates

irrespective of the subject name, i. e., if the app wants to
connect to https://www.paypal.com, it would also accept a
certificate issued to some-domain.com. We used a certificate
for an unrelated domain signed by startSSL14 for our attacks
in this category. The apps leaked information such as cre-
dentials for different services, emails, text messages, contact
data, bitcoin-miner API keys, premium content or access to
online meetings. A particularly interesting finding was an
anti-virus app that updated its virus signatures file via a
broken SSL connection. Since it seems that the connection
is considered secure, no further validation of the signature
files is executed by the app. Thus, we were able to feed our
own signature file to the anti-virus engine. First, we sent
an empty signature database that was accepted, effectively
turning off the anti-virus protection without informing the
user. In a second attack, we created a virus signature for the
anti-virus app itself and sent it to the phone. This signa-
ture was accepted by the app, which then recognized itself
as a virus and recommended to delete itself, which it also
did. Figure 1 shows a screenshot of the result of this attack.
This is a very stark reminder that defense in depth is an
important security principle. Since the SSL connection was
deemed secure, no further checks were performed to deter-
mine whether the signature files were legitimate. The app
has an install base of 500,000 to one million users.15

Figure 1: After injecting a virus signature database
via a MITM attack over broken SSL, the AntiVirus
app recognized itself as a virus and recommended to
delete the detected malware.

14https://www.startssl.com/
15honored as the ”Best free anti-virus program for Android”
with a detection rate > 90% – http: // www. av-test. org/
en/ tests/ android/

55

https://www.paypal.com
some-domain.com
https://www.startssl.com/
http://www.av-test.org/en/tests/android/
http://www.av-test.org/en/tests/android/

A second example in this category is an app that offers
“Simple and Secure” cloud-based data sharing. According
to the website, the app is used by 82% of the FORTUNE
500 companies to share documents. It has an install base
between 1 and 5 million users. While the app offers simple
sharing, it leaks the login credentials during the MITMA.
One interesting finding in this app was that the login cre-
dentials were leaked from a broken SSL channel while up-
and downloads of files were properly secured. However, us-
ing the login credentials obtained from the broken channel is
sufficient to hijack an account and access the data anyway.

A third example is a client app for a popular Web 2.0 site
with an install base of 500,000 to 1 million users. When us-
ing a Facebook or Google account for login, the app initiates
OAuth login sequences and leaks Facebook or Google login
credentials.

We also successfully attacked a very popular cross-platform
messaging service. While the app has been criticized for
sending messages as plaintext and therefore enabling Eve to
eavesdrop, the SSL protection that was intended to secure
’sensitive’ information such as registration credentials and
the user’s contact does not protect from Mallory. For in-
stance, we were able to obtain all telephone numbers from a
user’s address book using a MITMA. At the time of writing,
the app had an install base of 10 to 50 million users.

5.4 SSL Stripping
SSL stripping (cf. Section 2.3) can occur if a browsing

session begins using HTTP and switches to HTTPS via a
link or a redirect. This is commonly used to go to a secure
login page from an insecure landing page. The technique is
mainly an issue for Android browser apps, but it can also af-
fect other apps using Android’s webkit.WebView that do not
start a browsing session with a HTTPS site. We found the
webkit.WebView in 11,038 apps. Two noteworthy examples
vulnerable to this attack are a social networking app and an
online services client app. Both apps use the webkit view
to enhance either the social networking experience or use
online services (search, mail, etc.) and have 1.5 to 6 million
installs. The two apps start the connection with a HTTP
landing page, and we could rewrite the HTTPS redirects to
HTTP and thus catch the login credentials for Facebook,
Yahoo and Google.

One way to overcome this kind of vulnerability is to force
the use of HTTPS, as proposed by the HTTP Strict Trans-
port Security IETF Draft16, or using a tool such as HTTPS-
Everywhere.17 However, these options currently do not exist
for Android. Android’s default browser as well as available
alternatives such as Chrome, Firefox, Opera or the Dolphin
Browser do not provide HTTPS-Everywhere-like features
out of the box, nor could we find any add-ons for such a
feature.

5.5 Lazy SSL Use
Although the Android SDK does not support SSL pinning

out of the box, Android apps can also take advantage of the
fact that they can customize the way SSL validation is im-
plemented. Unlike general purpose web browsers that need
to be able to connect to any number of sites as ordained by
the user, many Android apps focus on a limited number of

16http://android-ssl.org/s/10
17https://www.eff.org/https-everywhere

hosts picked by the app developer: for example, the Pay-
Pal app’s main interaction is with paypal.com and its sister
sites. In such a case, it would be feasible to implement SSL
pinning, either selecting the small number of CAs actually
used to sign the sites or even pin the precise certificates.
This prevents rogue or compromised CAs from mounting
MITM attacks against the app. To implement SSL pinning,
an app can use its own KeyStore of trusted root CA certifi-
cates or implement a TrustManager that only trusts specific
public key fingerprints.

To investigate the usage of SSL pinning, we cherry-picked
20 high profile apps that were not prone to the previous
MITM attacks and manually audited them. We installed
our own root CA certificate on the phone and set up an SSL
MITM proxy that automatically created CA-signed certifi-
cates for the hosts an app connects to. Then, we executed
MITM attacks against the apps. Table 3 shows the results.
Only 2 of the apps make use of SSL pinning and thus were
safe from our attack. All other apps trust all root CA sig-
natures, as long as they are part of Android’s trust anchors,
and thus were vulnerable to the executed attack.

Table 3: Results of the SSL pinning analysis.
App Installs SSL Pinning
Amazon MP3 10-50 million
Chrome 0.5-1 million
Dolphin Browser HD 10-50 million
Dropbox 10-50 million
Ebay 10-50 million
Expedia Bookings 0.5-1 million
Facebook Messenger 10-50 million
Facebook 100-500 million
Foursquare 5-10 million
GMail 100-500 million
Google Play Market All Phones
Google+ 10-50 million
Hotmail 5-10 million
Instagram 5-10 million
OfficeSuite Pro 6 1-5 million
PayPal 1-5 million
Twitter 50-100 million X
Voxer Walkie Talkie 10-50 million X
Yahoo! Messenger 10-50 million
Yahoo! Mail 10-50 million

5.6 Missing Feedback
When an app accesses the Internet and sends or receives

data, the Android OS does not provide any visual feedback
to the user whether or not the underlying communication
channel is secure. The apps are also not required to sig-
nal this themselves and there is nothing stopping an app
from displaying wrong, misguided or simply no information.
We found several apps that provided SSL options in their
settings or displayed visual security indicators but failed to
establish secure SSL channels for different reasons.

We found banking apps in this category that we could not
fully test, since we did not have access to the required bank
accounts. However, these apps stated that they were using
SSL-secured connections and displayed green visual security
indicators, but suffered from one of the MITMA vulnerabil-
ities shown above. We were therefore able to intercept login

56

http://android-ssl.org/s/10
https://www.eff.org/https-everywhere

credentials, which would enable us to disable banking cards
and gather account information using the app.

We found several prominent mail apps that had issues
with missing feedback. Both were dedicated apps for specific
online services. The first app with an install base between
10 and 50 million users handled registration and login via a
secure SSL connection, but the default settings for sending
and receiving email are set to HTTP. They can be changed
by the user, but the user needs to stumble upon this pos-
sibility first. Meanwhile, there was no indication that the
emails were not protected.

An instant messaging app with an install base of 100,000
to 500,000 users transfers login credentials via a non-SSL
protected channel. Although the user’s password is trans-
ferred in encrypted form, it does not vary between different
logins, so Eve can record the password and could use it in a
replay attack to hijack the user’s account.

Figure 2: A sample warning message that occurs in
an app that is MITM attacked.

We found a framework that provides a graphical app builder,
allowing users to easily create apps for Android and other
mobile platforms. Apps created with this framework can
load code from remote servers by using the dalvik.system.

DexClassLoader. Downloading remote code is handled via
plain HTTP. We analyzed one app built with the framework
and could inject and execute arbitrary Java code, since the
downloaded code is not verified before execution.

During manual analysis, we also found that 53 apps that
were not vulnerable to our MITM attacks did not display
a meaningful warning messages to the user under attack.
These apps simply refused to work and mostly stated that
there were technical or connectivity problems and advised
the user to try to reconnect later. There was also an app
that recommended an app-update to eliminate the network
connection errors. Some apps simply crashed without any
announcement. Figure 2 shows a confusing sample error
message displayed during a MITMA.

Figure 3: Facebook’s SSL warning.

An additional 6 apps not vulnerable to our MITM at-
tacks did display certificate related warning messages, but

did not indicate the potential presence of a MITMA. The of-
ficial Facebook app is not vulnerable to the MITM attacks
described above and is a positive example for displaying a
meaningful warning message. Even if the warning message
contains tech-savvy wording, the user at least has the chance
to realize that a MITM attack might be occuring (cf. Fig.
3).

Interestingly – apart from browser apps – there was only
one app that allows the user to choose to continue in the
presence of an SSL error.

6. LIMITATIONS OF OUR ANALYSIS
This study has the following limitations: a) During static

code analysis, the studied applications were selected with
a bias towards popular apps; b) The provided install base
numbers are only approximate values as provided by Google’s
Play Market; c) We only checked 100 of the apps where
MalloDroid found occurrences of broken SSL implementa-
tions manually. For the rest, the existence of the unsafe
code does not mean that these apps must be vulnerable to
a MITM attack; d) Static code analysis might have failed
in some apps, for instance if they were obfuscated. Hence,
there might be further vulnerable apps that we did not clas-
sify as such; e) During manual audits, the applications were
selected with a bias towards popularity and assumed sensi-
tivity of data they handle; f) We could not test the entire
workflow of all apps, e. g., it was not possible to create a
foreign bank account to see what happens after successfully
logging into the bank account.

7. TROUBLE IN PARADISE
The default Android browser is exemplary in its SSL use

and uses sensible trust managers and host name verifiers.
Also, unlike most special purpose apps, it displays a mean-
ingful error message when faced with an incorrect certificate
and allows the user to continue on to the site if (s)he wants
to. Thus, it relies on the ability of the user to understand
what the displayed warning messages mean and what the
safest behavior is. There have been many studies of this
issue conducted in the context of desktop browsing. Here,
to the best of our knowledge, we present the first survey to
investigate the users’ perceptions when using secure connec-
tions in the Android browser.

7.1 Online Survey
The goal of our online survey was to explore whether or

not the user can assess the security of a connection in the
Android browser. We wanted to test that a) a user can dis-
tinguish a HTTPS connection from a regular HTTP connec-
tion and b) how the user perceives an SSL warning message.
Previous work has addressed the effectiveness of warning di-
alogues in several scenarios, mostly for phishing on regular
computers (e. g., [5, 24]). Recently, Porter Felt et al. [17]
conducted a survey on the prompts informing users of the
requested permissions of Android apps during installation.
The online survey in this paper is based on a similar design,
but studies SSL certificate warnings and visual security in-
dicators in Android’s default browser.

Participants were recruited through mailing lists of sev-
eral universities, companies and government agencies. The
study invitation offered a chance to win a 600$ voucher from
Amazon for participation in an online survey about Android

57

dalvik.system.DexClassLoader
dalvik.system.DexClassLoader

smartphone usage. The survey could only be accessed di-
rectly from an Android phone. We served the survey via
HTTPS for one half of the participants and via HTTP for
the other. After accessing a landing page, we showed the
participants a typical Android certificate warning message,
mimicking the behavior of the Android browser. Subse-
quently, we asked whether the participants had seen this
warning before, if they had completely read its text and
how much risk they felt they are warned against. We also
wanted to know whether or not they believed to be using a
secure connection and their reasons for this belief. Finally,
we collected demographic information on technical experi-
ence, Android usage, previous experience with compromised
credentials or accounts as well as age, gender and occupa-
tion. More online survey related information can be found
in Appendix A.

7.2 Results
754 participants completed the survey. The average age

was 24 years (sd = 4.01), 88.3% were students while the
rest mainly were employees. 61.9% of our participants did
not have an IT-related education or job (non-IT experts in
the following) and 23.2% had previous experience with com-
promised credentials or accounts. Overall, the self-reported
technical confidence was high: participants stated a mean
value of 4.36 for IT experts and 3.58 for non-experts on a
scale from 1 (often asking for help) to 5 (often providing
help to others). 51.9% of IT experts and 32.8% of non-IT
experts have been using an Android smartphone for more
than a year and 57.1% of experts and 69.8% of non-experts
had only 25 apps or less installed.

Concerning connection security, we found that 47.5% of
non-IT experts believed to be using a secure connection,
while the survey was served over HTTP. On top of that,
even 34.7% of participants with prior IT education thought
that they were using a secure channel when they were not. In
both groups, 22.4% were unsure about the protection of their
connection. Only 58.9% of experts and 44.3% of non-experts
correctly identified that they were using a secure or insecure
connection when prompted. The majority of users referred
to the URL prefix as the reason for their beliefs and 66.5%
of participants that were unsure said that they did not know
how to judge the connection security. Those users that were
wrongly assuming a secure connection stated that they use
a trustworthy provider (47.7%), trust their phone (22.7%)
or thought that the address was beginning with https://
even though it was not (21.6%) as a justification for their
beliefs. Interestingly, participants that stated that they had
suffered from compromised credentials or online accounts
before did significantly better in judging the connection state
(χ2 = 85.36, df = 6, p < 0.05).

Concerning the warning message, the majority of partici-
pants stated that they had not seen such a certificate warn-
ing before (57.6% of non-IT experts and 52.3% of IT experts)
or were unsure (5.9%/9.2%). 24.0% of all participants only
read the warning partially and 4.5% did not read it at all.
These numbers did not differ significantly based on whether
or not they had seen the warning before. The participants
rated the risk they were warned against with 2.86 (sd = .94),
with 1 being a very low risk and 5 a very high risk. The per-
ceived risk did not differ significantly between IT-experts
and other users.

Overall, the results of our online survey show that assess-

ing the security of a browser session on Android’s default
browser was problematic for a large number of our partic-
ipants. While certificate handling is done correctly by the
browser app and basic visual security indicators are offered,
the user’s awareness for whether or not her or his data is
effectively protected is frequently incomplete.

7.3 Limitations
Our survey is limited in the following ways: We used offi-

cial mailing lists to distribute the invitation for the survey.
While, on a technical level, this should not affect the trust-
worthiness of the mail or the survey site - we did not digitally
sign the emails and we served the survey with a URL that
was not obviously linked to the university. Therefore, the
emails could have been spoofed. Nonetheless, it is likely that
a higher level of trust was induced in most participants, due
to the fact that the survey was advertised as a university
study (c.f. [22]). We therefore refrained from evaluating the
users’ reasons for accepting or rejecting a certificate in this
concrete scenario.

Participants were self-recruited from multiple sources, but
we received mainly entries from university students for this
first exploration. While a study by Sotirakopoulos et al. [23]
found little differences between groups of students and the
broader population in the usable security context, a more
varied sample of participants would improve the general ap-
plicability of the results.

8. COUNTERMEASURES
There are several ways to minimize the problem of unen-

crypted traffic or SSL misuse. They can be categorized into
three groups: (1) solutions that are integrated into the An-
droid OS, (2) solutions that are integrated into app markets
and (3) standalone solutions.

8.1 OS Solutions

Enforced Certificate Checking.
A radical solution to prevent overly permissive Trust-

Managers, SSLSocketFactorys and AllowAllHostnameVer-

ifiers is to disallow custom SSL handling completely. This
can be achieved by forcing developers to use the standard
library implementations provided by Android’s APIs. By
limiting the way TrustManagers, SSLSocketFactorys and
HostnameVerifiers can be used, most cases of faulty code
and unintended security flaws could be avoided.

HTTPS Everywhere.
A solution to improve a fair number of the vulnerabilities

discovered in our sample set would be an Android version
of HTTPS-Everywhere, integrated into the communication
APIs. This would prevent most SSL stripping attacks we
found in our sample set.

Improved Permissions and Policies.
Instead of simply having a general permission for Inter-

net access, a more fine-grained policy model could allow for
more control (cf. [16]). By introducing separate permissions
for INTERNET_SSL and INTERNET_PLAIN, apps could indicate
which type of connections is used. This would give users
a chance to avoid applications that do not use HTTPS at
all. However, in mixed-mode cases or when SSL is used

58

but used incorrectly, this method would not protect the
user without additional indicators/countermeasures. Fur-
thermore, introducing policies like GSM_ONLY, NO_OPEN_ WIFI

or TRUSTED_NETWORKS could help to protect apps from some
MITM attacks. Despite the fact that cellular networks such
as GSM/3G/4G do not provide absolute security, they still
require considerably more effort to execute an active MITMA.
Apps could then specify which types of networks or even
which connections specifically are allowed to be used. How-
ever, this countermeasure could have considerable usability
and acceptance issues.

Visual Security Feedback.
Reasonable feedback to the user about the security status

of the currently running application is undoubtedly a valu-
able countermeasure – at least for some users. The operat-
ing system should provide visual feedback on whether or not
apps are communicating via a secure channel. Current mo-
bile devices usually only show the signal strength, the con-
nection type and whether any transfers are in progress at all.
Finding an effective way to inform users about which apps
are currently communicating with the Internet and whether
the communication is secure is not trivial and should be
studied carefully before a solution is propagated.

MalloDroid Installation Protection.
MalloDroid could be integrated into app installers, such

as Kirin [9], to perform static code analysis at install time.
This analysis performed directly on a phone could warn of
potentially unsafe applications. Users would then have to
decide whether they wish to install the app irrespective of
the warning.

8.2 App Market Solutions
Similar to the MalloDroid installation protection, Mallo-

Droid could be integrated into app markets. This form of
automated checking of apps could either be used to reject
apps from entering the market or warnings could be added
to the app’s description. Both options have usability and
acceptance issues that need to be studied.

8.3 Standalone Solution: The MalloDroid App
& Service

All countermeasures mentioned above require modifica-
tion of the Android OS and support from vendors and/or
app markets. Standalone solutions can be deployed more
easily. Therefore, as a stop-gap measure, we are going to
offer our MalloDroid tool as a Web app. This will at least
allow interested users to perform checks on apps before they
install them. MalloDroid can of course also be used as-is
with Androguard.

9. CONCLUSION
In this paper, we presented an investigation of the current

state of SSL/TLS usage in Android and the security threats
posed by benign Android apps that communicate over the
Internet using SSL/TLS. We have built MalloDroid, a tool
that uses static code analysis to detect apps that potentially
use SSL/TLS inadequately or incorrectly and thus are po-
tentially vulnerable to MITM attacks. Our analysis of the
13,500 most popular free apps from the Google Play Mar-
ket has shown that 1,074 apps contain code belonging to this

category. These 1,074 apps represent 17.0% of the apps that
contain HTTPS URLs. To evaluate the real threat of such
potential vulnerabilities, we have manually mounted MITM
attacks against 100 selected apps from that set. This man-
ual audit has revealed widespread and serious vulnerabili-
ties. We have captured credentials for American Express,
Diners Club, Paypal, Facebook, Twitter, Google, Yahoo,
Microsoft Live ID, Box, WordPress, IBM Sametime, remote
servers, bank accounts and email accounts. We have succes-
fully manipulated virus signatures downloaded via the auto-
matic update functionality of an anti-virus app to neutralize
the protection or even to remove arbitrary apps, including
the anti-virus program itself. It was possible to remotely
inject and execute code in an app created by a vulnerable
app-building framework. The cumulative number of installs
of apps with confirmed vulnerabilities against MITM attacks
is between 39.5 and 185 million users, according to Google’s
Play Market.

The results of our online survey with 754 participants
showed that there is some confusion among Android users as
to which security indicators are indicative of a secure connec-
tion, and about half of the participants could not judge the
security state of a browser session correctly. We discussed
possible countermeasures that could alleviate the problems
of unencrypted traffic and SSL misuse. We offer MalloDroid
as a first countermeasure to possibly identify potentially vul-
nerable apps.

The findings of our investigation suggest several areas of
future work. We intend to provide a MalloDroid Web App
and will make it available to Android users. Moreover, there
seems to be a need for more education and simpler tools to
enable easy and secure development of Android apps. But
most importantly, research is needed to study which coun-
termeasures offer the right combination of usability for de-
velopers and users, security benefits and economic incentives
to be deployed on a large scale.

10. ACKNOWLEDGEMENT
The authors would like to thank Marten Oltrogge and Fe-

lix Fischer for their help during app analysis and the anony-
mous reviewers for their helpful comments.

11. REFERENCES
[1] X.509 Internet Public Key Infrastructure, Online

Certificate Status Protocol - OCSP.
http://tools.ietf.org/html/rfc2560.

[2] RFC 5280: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL)
Profile. http://tools.ietf.org/html/rfc5280, 2008.

[3] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer,
A. Sadeghi, and B. Shastry. Towards Taming
Privilege-Escalation Attacks on Android. In
Proceedings of the 19th Network and Distributed
System Security Symposium, 2012.

[4] L. Davi, A. Dmitrienko, A. Sadeghi, and M. Winandy.
Privilege Escalation Attacks on Android. In
Proceedings of the 13th International Conference on
Information Security, pages 346–360, 2011.

[5] S. Egelman, L. Cranor, and J. Hong. You’ve Been
Warned: An Empirical Study of the Effectiveness of
Web Browser Phishing Warnings. In Proceedings of the

59

http://tools.ietf.org/html/rfc2560
http://tools.ietf.org/html/rfc5280

26th Annual SIGCHI Conference on Human Factors
in Computing Systems, pages 1065–1074, 2008.

[6] A. Egners, B. Marschollek, and U. Meyer. Messing
with Android’s Permission Model. In Proceedings of
the IEEE TrustCom, pages 1–22, 2012.

[7] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-flow Tracking System For Realtime
Privacy Monitoring on Smartphones. In Proceedings of
the 9th USENIX Conference on Operating Systems
Design and Implementation, pages 393–407, 2010.

[8] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A Study of Android Application Security. In
Proceedings of the 20th USENIX Conference on
Security, 2011.

[9] W. Enck, M. Ongtang, and P. McDaniel. On
Lightweight Mobile Phone Application Certification.
In Proceedings of the 16th ACM Conference on
Computer and Communications Security, pages
235–245, 2009.

[10] W. Enck, M. Ongtang, and P. McDaniel.
Understanding Android Security. In Proceedings of the
IEEE International Conference on Security & Privacy,
pages 50–57, 2009.

[11] C. Jackson and A. Barth. ForceHTTPS: Protecting
High-security Web Sites From Network Attacks. In
Proceeding of the 17th International Conference on
World Wide Web, pages 525–534, 2008.

[12] M. Marlinspike. More Tricks For Defeating SSL In
Practice. In Black Hat USA, 2009.

[13] M. Marlinspike. New Tricks for Defeating SSL in
Practice. In Black Hat Europe, 2009.

[14] P. McDaniel and W. Enck. Not So Great
Expectations: Why Application Markets Haven’t
Failed Security. IEEE Security & Privacy, 8(5):76–78,
2010.

[15] M. Nauman, S. Khan, and X. Zhang. Apex: Extending
Android Permission Model And Enforcement With
User-defined Runtime Constraints. In Proceedings of
the 5th ACM Symposium on Information, Computer
and Communications Security, pages 328–332, 2010.

[16] A. Porter Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android Permissions Demystified. In
Proceedings of the 18th ACM Conference on Computer
and Communications Security, pages 627–638, 2011.

[17] A. Porter Felt, E. Ha, S. Egelman, A. Haney, E. Chin,
and D. Wagner. Android Permissions: User Attention,
Comprehension, and Behavior. In Proceedings of the
8th Symposium on Usable Privacy and Security, 2012.

[18] G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos. Paranoid Android: Versatile Protection for
Smartphones. In Proceedings of the 26th Annual
Computer Security Applications Conference, pages
347–356, 2010.

[19] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici,
S. Dolev, and C. Glezer. Google Android: A
Comprehensive Security Assessment. Security &
Privacy, IEEE, 8(2):35–44, 2010.

[20] D. Shin and R. Lopes. An Empirical Study of Visual
Security Cues to Prevent The SSLstripping Attack. In
Proceedings of the 27th Annual Computer Security
Applications Conference, pages 287–296, 2011.

[21] Y. Song, C. Yang, and G. Gu. Who is Peeping at Your
Passwords at Starbucks? – To Catch An Evil Twin
Access Point. In IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 323–332,
2010.

[22] A. Sotirakopoulos and K. Hawkey. ”I Did it Because I
Trusted You”: Challenges With The Study
Environment Biasing Participant Behaviours. In
Proceedings of the 6th Symposium on Usable Privacy
and Security, 2010.

[23] A. Sotirakopoulos, K. Hawkey, and K. Beznosov. On
the Challenges in Usable Security Lab Studies:
Lessons Learned From Replicating a Study on SSL
Warnings. In Proceedings of the 7th Symposium on
Usable Privacy and Security, 2011.

[24] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and
L. Cranor. Crying Wolf: An Empirical Study of SSL
Warning Effectiveness. In Proceedings of the 18th
USENIX Security Symposium, pages 399–416, 2009.

[25] T. Vidas, D. Votipka, and N. Christin. All Your Droid
Are Belong To Us: A Survey Of Current Android
Attacks. In Proceedings of the 5th USENIX Workshop
on Offensive Technologies, pages 10–10, 2011.

[26] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You,
Get Off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In
Proceedings of the 19th Annual Network and
Distributed System Security Symposium, 2012.

APPENDIX
A. ONLINE SURVEY

We based the questions of our online survey on previous
surveys [23], [22] and [17], adapting them to our scenario
and optimizing the survey for mobile delivery. For this pur-
pose, we removed most of the free text answers and replaced
them by multiple choice or radio button answers to make the
online survey easier to handle on an Android smartphone.

As described in Section 7.1, after clicking a link on the
landing page to begin the study, participants were redirected
to a non-university domain with a page designed to look
like Android’s 4.0 default browser warning message. The
warning message was interactive, hence users could click on
”Certificate Details” for more information. The page thus
replicated the user experience of a real SSL warning message
in Android’s default browser.

We presented two different SSL warnings, although, just
as with the real Android SSL warnings, the difference only
became visible if the user clicked on ”Certificate Details”.
One warning stated that the certificate was signed by an
untrusted CA and the other warning stated that the host-
name did not match the certificate’s common name.

We tracked whether the participants clicked ”Continue”
or ”Cancel”. In both cases, participants were directed to
the first page of the questionnaire that explained that the
message just shown was part of the study. For half of the
participants, the study was served via HTTPS, and for the
other half, it was served via plain HTTP. Hence, we had four
different groups: untrustedCA+HTTP, untrustedCA+HTTPS,
wronghostname+HTTP and wronghostname+HTTPS. The sur-
vey was also hosted on a domain that did not obviously
belong to our universities, in order to avoid the implicit

60

trust often associated with university servers. Unlike pre-
vious studies ([23], [22] and [17]), we did not refer to the
SSL warning message as a warning message during the on-
line survey. Instead, we called it a popup message to use
a neutral term avoiding a bias in the users’ perceptions.
Subsequently, questions contained in the online survey are
listed. In addition to SSL warning message comprehension,
HTTPS indicator comprehension, Android usage and online
security awareness, we asked the participants about their
self-reported technical expertise and demographic informa-
tion. Due to space constraints, questions from the last two
categories are not listed below.

A.1 SSL Warning Message Comprehension
• The popup message you just saw is part of this survey.

Have you previously seen this kind of message while
surfing the Internet with your Android phone?

– (Yes, No, I’m not sure)

• Did you read the entire text of the popup message?

– (Yes, Only partially, No)

• Please rate the following statements (all statements
were rated on a 5-point Likert scale, ranging from ”Don’t
agree” to ”Totally agree”):

– I always read these kind of popup messages entirely.

– I understood the popup message.

– I am not interested in such popup messages.

– I already knew this popup message.

– I am only interested in winning the voucher.

• When you saw the popup message, what was your first
reaction?

– I was thankful for the message.

– I was annoyed by the popup.

– I didn’t care.

– Other: (text field)

• Please rate the amount of risk you feel you were warned
against.

– 5-point Likert scale ranging from ”Very low risk” to
”Very high risk”

• What action, if any, did the popup message want you
to take?

– To not continue to the website.

– To be careful while continuing to the website.

– To continue to the website.

– I did not feel it wanted me to take any action.

– Other: (text field)

• How much did the following factors influence your deci-
sion to heed or ignore the popup message? (all factors
were rated on a 5-point Likert scale, ranging from ”Very
little influence” to ”Very high influence”)

– The text of the message.

– The colors of the message.

– The choices that the message presented.

– The destination URL.

– The chance to win a voucher.

– The fact that this is an online survey.

– Other factors: (text field)

• Which factor had the most influence on your decision?

– The text of the message.

– The colors of the message.

– The choices that the message presented.

– The destination URL.

– The chance to win a voucher.

– The fact that this is an online survey.

– Other factors: (text field)

A.2 HTTPS Indicator Comprehension
• Is the Internet connection to this online survey secure?

– (Yes, No, I’m not sure)

• Please explain your decision:
if answered with ”yes”

– I trust my service provider.

– I trust my smartphone.

– The URL starts with https://.

– All Internet communication is secure.

– A lock symbol is visible in the browser bar.

– Other: (text field)

if answered ”no”

– I do not trust my service provider.

– I do not trust my smartphone.

– The URL starts with http://

– Communicating over the Internet is always inse-
cure.

– There is no lock symbol in the browser bar.

– The address bar is not green.

– Other: (text field)

if answered ”don’t know”

– I don’t know how to determine this.

– I don’t care.

– I don’t trust the visual indicators.

– I don’t trust IT in general.

– Other: (text field)

A.3 Android Usage
• For how long have you been using an Android smart-

phone?

– 1 month or less

– 2 - 6 months

– 7 - 11 months

– 1 - 2 years

– more than 2 years

• Did you turn off browser warning messages?

• How many apps have you installed on your phone?

A.4 Online Security Awareness
• Have you ever had any online account information stolen?

(Yes, No)

• Have you ever found fraudulent transactions on a bank
statement? (Yes, No)

• Have you ever been notified that your personal infor-
mation has been stolen or compromised? (Yes, No)

• Have you ever lost your smartphone? (Yes, No)

61

https://
http://

	Introduction
	Background
	SSL
	Android & SSL
	MITM Attack

	Related Work
	Android Security
	SSL Security

	Evaluating Android SSL Usage
	HTTP vs. HTTPS
	Deployed SSL Certificates
	Custom SSL Validation

	MITMA Study
	Test Environment
	Trusting All Certificates
	Allowing All Hostnames
	SSL Stripping
	Lazy SSL Use
	Missing Feedback

	Limitations of Our Analysis
	Trouble in Paradise
	Online Survey
	Results
	Limitations

	Countermeasures
	OS Solutions
	App Market Solutions
	Standalone Solution: The MalloDroid App & Service

	Conclusion
	Acknowledgement
	References
	Online Survey
	SSL Warning Message Comprehension
	HTTPS Indicator Comprehension
	Android Usage
	Online Security Awareness

