
Listen to Developers! A Participatory Design Study on
Security Warnings for Cryptographic APIs

Peter Leo Gorski, Yasemin Acar∗, Luigi Lo Iacono, Sascha Fahl∗
TH Köln/University of Applied Sciences, ∗Leibniz University Hannover

ABSTRACT
The positive effect of security information communicated
to developers through API warnings has been established.
However, current prototypical designs are based on security
warnings for end-users. To improve security feedback for
developers, we conducted a participatory design study with
25 professional software developers in focus groups.

We identify which security information is considered helpful in
avoiding insecure cryptographic API use during development.
Concerning console messages, participants suggested five core
elements, namely message classification, title message, code
location, link to detailed external resources, and color. Design
guidelines for end-user warnings are only partially suitable in
this context.

Participants emphasized the importance of tailoring the detail
and content of security information to the context. Console
warnings call for concise communication; further information
needs to be linked externally. Therefore, security feedback
should transcend tools and should be adjustable by software
developers across development tools, considering the work
context and developer needs.

Author Keywords
security warning design, focus groups, participatory design,
cryptographic APIs, developer console, software development

CCS Concepts
•Security and privacy → Software security engineering;
Usability in security and privacy;

INTRODUCTION
Over 26 million people worldwide are developing software,
including full-time, part-time, and nonprofessional develop-
ers [15]. These developers satisfy our current need for soft-
ware across a variety of application platforms and have the re-
sponsibility of implementing security and privacy for billions
of users. Legal requirements like the General Data Protec-
tion Regulation [38] require personal data to be handled care-
fully, which often involves the use of cryptography. Instead of
writing cryptographic code from scratch, APIs (Application
Programming Interfaces) are therefore an essential tool for
software developers to bring cryptography into their products.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.3376142

Because available cryptographic APIs (CAPIs) and tools are
difficult to use [31, 1] even for experienced developers [34],
common requirements such as securely storing passwords,
encrypting files or establishing encrypted network connections
can be challenging and error-prone [32].

Many CAPIs offer insecure features and function calls for
compatibility reasons, e.g. to support outdated cryptographic
algorithms or parameters. As per the status quo, programmers
are not informed or warned when using such API functionali-
ties. Warnings that point the developer to an insecure CAPI
use or potential risks in program code play an important role
in secure software development research [18, 3]. However,
how to design good security warning messages for developers
is yet not well understood [18].

Previous work discussed different approaches to communicate
security feedback to developers, including security warnings
in the IDE (Integrated Development Environment) triggered
by plugins [33], static analysis tools [28], or security feedback
implemented as API warnings in the developer console [17].
However, the designs of previous approaches are based on
research for end-user warnings and security experts’ opin-
ions without considering the perspective of actual software
developers.

Because the developer console is a central point for informa-
tion in software development (cf. Section RQ2 - Warning
Context), the purpose of this work is to revise and improve
previous security API warning designs [17] for CAPIs. We
aim to improve cryptographic advice in terms of usability, and
to learn more about the dimensions, aspects, advantages, and
disadvantages of the API warning approach from a software
developer’s perspective. Therefore, we followed a participa-
tory design approach and conducted four focus groups (FG)
with a total of 25 developers. The goal of our FGs was to
answer the following research questions:

RQ1 What kind of design do software developers find
helpful for cryptography warning (CW) messages in the
console? Based on a participatory design approach, we
examine designs for CWs in the console based on the ex-
periences and preferences of the target group. We follow
a three-step process. First, FGs compile information they
perceive as helpful when being warned of insecure CAPI
use. Second, participants visualize and draw warnings they
perceive as helpful. In a third step, the respondents compare
their approach with an existing design approach [17].

RQ2 Do software developers find console security warn-
ings helpful in development processes and software en-
vironments? We put the design approach into the real
world context to learn from the developers how they work

https://doi.org/10.1145/3313831.3376142

with the developer console and how they assess the rele-
vance of security warnings in this particular environment.

RQ3 From the developer’s point of view, is there a differ-
ence between security warnings and other types of con-
sole warnings? We would also like to know how security
warnings differ from other warnings in the console to gain
further insight into design requirements.

RQ4 Would developers implement their own warning de-
sign into a CAPI? We identify common hurdles when im-
plementing CWs in an API.

With respect to console messages, our participants suggested
five core elements. These are message classification, title
message, code location, link to detailed external resources
and coloring. Further research should confirm these results
to formulate validated design guidelines for API warnings.
Participants emphasized the importance of tailoring the detail
and content of security information to the context. Console
warnings call for concise communication; further information
needs to be linked externally. Therefore, security feedback
should transcend tools and should be adjustable by software
developers across development tools, considering the applica-
tion context and developer needs.

In the FGs, participants were asked to design and comment
on existing “security warnings” for CAPIs displayed in devel-
oper consoles. A console provides a command-line interface
receiving commands in text form and giving feedback in text
form as well. However, at the end of the FGs, the views were
spread across a wider development environment context. In
a broader tool-wide sense, we use the general term “security
feedback” throughout the paper. APIs are also called libraries
because they provide a collection of programming blocks. We
consistently use the term API.

We make the following contributions: (1) We conduct four
FGs with the goal to improve CAPI feedback for developers,
(2) We find that developers generally find security feedback
important and useful, (3) We find that security feedback needs
to be adapted to its context, (4) Our work shows for the first
time from a developer’s point of view that existing end-user
centered security warning guidelines cannot be applied di-
rectly.

RELATED WORK
The API design space provides an overview of the capabilities
available to an API producer to design an API and make it
usable [37, 16]. Usability is an important design characteristic
for an API to support consumers in using features correctly
and to mitigate insecure use, which otherwise likely results in
program errors and security issues [18, 30]. Therefore, dealing
with APIs within the security API domain [20] requires special
attention to the communication between API designers and
consumers.

Research has identified specific challenges developers face
when working with CAPIs. Users of CAPIs are often required
to have a high level of cryptography expertise [18]. Achieving
secure software requires the right choice of algorithms, the
correct sequence of method calls, and confident handling of

parameters [31]. Overly complicated designs for the average
developer, missing API features addressing typical use cases,
and immature documentations lead to error-prone APIs [1].
These manifest in programming errors caused by cognitive
breakdowns in implementation activities [23, 25]. Also, devel-
opers who try to solve this situation by consulting actionable
advice from community platforms will likely copy insecure
code examples [2, 8]. To help users of security APIs, multiple
research approaches are focused inside and outside of the API
design space. We briefly discuss related work in IDEs, static
code analysis tools, message design for compiler errors, and
API warnings. Developers also need additional support in deal-
ing with identified security issues [35]. Therefore, research
is being carried out into how developer centered approaches
can improve debugging interfaces [29, 24, 26]. This topic,
however, lies outside the focus of this work.

The graphical capabilities of an IDE can be used to draw the
developer’s attention to security vulnerabilities. ASIDE offers
interactive code annotation, including highlighted source code
and icons as security indicators in a text editor [39, 41]. This
approach could also be improved by FixDroid, where auto-
mated code fixes give the users implicit actionable support at
a click [33]. The IDE extension CogniCrypt takes the burden
of writing code off the developer. Needs can be defined in a
wizard, and the corresponding source code is generated for the
user [28]. Such IDE tools are not located in the API design
space and thus elude the direct influence of an API designer.

Another active research field to mitigate insecure cryptography
use are static code analysis tools. Algorithms analyze written
source code and trigger warnings. These tools are often sup-
plied as plug-ins for IDEs. High false positives rates [22] and
bad warning message design [7, 14] are significant problems
when working with warnings from program analyzers. They
also need to be thoroughly configured to improve the number
of relevant warnings for a given user context [5]. Static code
analysis is not located in the API design space either, as an
API design has no direct effect on analysis results.

Previous research has also focused on the improvement of
compiler errors that are shown in the developer console during
compile time. A compiler is used in compiled programming
languages to translate human-readable source code into ma-
chine code. CAPIs are not limited to compiled programming
languages and are also not a part of compiler software. In this
context, the feedback of an API is displayed during runtime
only. Compiler and API messages share a target medium with
the developer console. However, differences or similarities in
design have not yet been examined. Compiler messages refer
strongly to the syntax of a programming language, whereas
API messages refer to specific problems or features that an
API designer can communicate to the API user at runtime.

To support compiler developers in designing new error mes-
sages or evaluate existing, Barik et. al [9] have formulated
three principles. We can confirm that the principle “Allow de-
velopers the autonomy to elaborate arguments” is also relevant
in the context of CAPI warnings (cf. Section RQ2 - Warning
Context). Traver [40] theoretically discusses eleven abstract
principles for compiler error message design, like “clarity and

brevity”, “context-insensitivity” and “locality”, which are also
confirmed in the context of API warnings by the results of this
study (cf. Section Results). Barik et. al also found evidence
that participants do read compiler error messages by conduct-
ing an eye-tracking study [10]. Reading such messages is
comparably complex to reading source code. Becker [12]
found evidence that providing explanations in complement
to compiler errors by an extended editor can help developers
make fewer errors. Compiler messages are not located in the
API design space, either.

For direct communication between API designers and API
users at program runtime via the developer console, Stylos
& Myers [37] only mention exceptions in their model. Ex-
ceptions handle unusual conditions that can lead to program
errors. However, they should not be used to handle ordinary
control flow [13]. Most recently Gorski et. al proposed an
initial developer console warning for CAPIs and confirmed its
effectiveness in an online experiment [17]. While they were
able to demonstrate improved code security with their CAPI
console warning, the researchers applied heuristics that are
based on end-user research and have not yet been proven to
be optimal for the specific context of software development
and console environments [11]. We examine the results of this
study and try to improve the design of CAPI warnings in the
console. To the best of our knowledge, there are no guide-
lines or recommendations for developer security warnings in
their working environment, including the developer console.
There is neither an understanding of overlaps nor differences
between developer and end-user environments.

We are not aware of research on the usability of other types
of API warnings like updates, deprecation, or linting warn-
ings. Unlike other API warnings, CAPI warnings indicate that
cryptography is not being handled securely to protect data. A
warning could indicate that, e.g., the confidentiality or integrity
of data is not present, even though API calls are present that
are intended to integrate such functionality. This situation is
difficult to detect because the program superficially seems to
work as intended and behaves just as it would if the data were
handled securely. The consequence is an intransparent lack of
data protection at the code level, which affects the data of all
users of the software. Further research should, therefore, be
done on CAPI warnings to avoid unintentional or accidental
insecure use by giving appropriate information to API users.

METHODOLOGY
We conducted four FGs with experienced software developers
to gather a wide range of opinions, perceptions and ideas
emerging from group discussion [27]. FGs can also help to
identify and address aspects that may not be mentioned in
individual interviews. There is no formal IRB process at our
university. Our study design complies with the requirements
of the European GDPR [38]; participants agreed to anonymzed
use of their study data by reading and signing a consent form
prior to the study. FGs were audio-recorded and transcribed by
the main author. Anonymized transcripts as well as pictures
taken of materials developed in the study are kept in secure
storage; audio files and PII were deleted.

Study Protocol
We developed the study protocol according to FG guide-
lines [27]. The protocol was reviewed by subject matter ex-
perts (two authors, two non-authors) and revised according to
their feedback. Our FG protocol was structured as follows and
presented via a slide deck.

Warm-up questions: (1) Why are you enthusiastic about pro-
gramming? (2) What do you associate with data security in the
context of software? (3) What do you associate with working
with a console or a terminal?

Console warning experiences: (4) Recall which consoles
you’ve worked with before and which warnings were dis-
played there? What experiences have you had? (Showed six
example screenshots of consoles) Write on cards and discuss.

Participatory warning message design: (5) What are the rea-
sons why displaying console warnings can be (a) helpful or
important (b) unhelpful or unimportant in the development
process? Write on cards, then work and discuss on a pin-board.
(6) (Showed an RC4 Python code example.) Imagine a CAPI
issuing a security-related warning message in the console to
give the developer a recommendation for action. Please list
information and/or instructions that you would expect to be
helpful in such a case. What aspects or content should a secu-
rity warning include in the console? Write on cards, then work
and discuss on a pin-board. (7) Please rate your agreement
to the following statements: I find aspect X (a single card or
grouped cards at the pin-board) helpful as a part of a security
warning message in the console. (strongly disagree, disagree,
neutral, agree, strongly agree) (8) What do you think a helpful
security warning message in the console looks like? Please
sketch an example message on a piece of paper. You are al-
lowed to draw multiple messages. Present and discuss your
drawings. (9) Please look at the following security warning
proposal (cf. Figure 4) for a few minutes. What do you (a)
like and (b) dislike about it compared to your design? Discuss.

Warning context: (10) What could be reasons that would make
you: (a) Implement the recommendation of the security warn-
ing? (b) Ignore the recommendation of the security warning?
Discuss.

Warning relevance:(11) Imagine you are developing a CAPI in
the future or you already developed one, would you implement
console security warnings to help users of your API to prevent
insecure cryptography use? Please elaborate on the reasons
that informed your decision and discuss.

The main results were summarized by the moderator: (12) Do
you feel my summary includes all the important points? (13)
Are there any other aspects we should have talked about?

We tested the study protocol with the first FG and made slight
changes to the protocol based on the participants’ feedback:
We revised one slide to make one question more easily acces-
sible. The study was conducted in German; however, partici-
pants organically produced their written and drawn materials
mostly in English. The main author led all FGs and moderated
group discussions.

Recruitment
We recruited developers with professional programming expe-
rience in the Cologne area. To include a wide variety of expe-
riences and opinions, we required professional programming
experience but did not restrict our recruitment to a specific
developer population. We invited potential participants via
mailing lists, e.g., of PyCologne, a local Python developer
group, and we emailed personal contacts at software devel-
opment companies. We also recruited participants based on
recommendations by FG participants after their FG. The invita-
tion email included a link to the research project website and a
brief qualification questionnaire. In the qualification question-
naire, we collected information about prospective candidates’
work and programming experience. Overall, we ended up
recruiting 25 participants for four FGs. We conducted four
FGs since we reached saturation after the third FG. The fourth
group did not develop or discuss new aspects.

Participants
We recruited 25 participants from the Cologne metro area.
We organized these into four FGs that took place in February,
May and July of 2019. Participants were between 20 to 43
years old (mean age: 31 years, sd = 6). All participants were
male (cf. Section Limitations). They reported to have been
programming for 10 years on average (sd:6) and to have been
working professionally as software developers for 6 years on
average (sd:6) (cf. Table 1).

Data Analysis
FGs lasted about two and a half hours. After each FG, photos
of pinboards were taken and all drawings or notes were digi-
tized. Full transcripts of audio recordings, participants’ notes,
and drawings were grouped by question and task and imported
to ATLAS.ti [6].

The codebook was created by multiple researchers, reflecting
different experiences and backgrounds which include formal
education in media technology, mathematics and computer sci-
ence; all authors have research experience in security, privacy
and human factors research. We used the coding for grouping
the FGs’ contents. Beginning with open coding, the first au-
thor analyzed and coded each contribution to the discussions.
In this inductive process, he considered (1) exhaustiveness to
ensure codings will reflect all main topics when assigned to
higher-level semantic groups. He also adhered to (2) mutual
exclusiveness of semantic groups to keep codes unambiguous.
Paying attention to completeness, a total number of 210 sub-
codes of 21 higher level code groups were operationalized
following a group discussion between the authors. Two addi-
tional coders with computer science background and minor
HCI knowledge were introduced to the codebook in a one
hour briefing, following which they independently coded FG
number one (about 25% of all transcripts, exceeding recom-
mendations for double-coding in qualitative research [19])
applying the codebook. The intention was to use inter-rater
agreement scores to identify ambiguous codes or codings that
were forgotten by the main coder. While the granular code-
book was difficult for the additional coders to apply, mainly
because they were inexperienced in the topic and in qualitative
coding and due to the high number of codes, the following

comparison and discussion resulted in a more precise opera-
tionalization of the codebook and confirmed the main coder’s
coding decisions. After completing the coding process, we
matched research questions to relevant code groups (cf. Ta-
ble 2) and identified the FGs’ major results.

To be able to give weight to our assessment of helpful content
of CWs, we extracted quantitative data from the mostly quali-
tative FGs in the following ways: We asked the participants to
rate their suggestions on a 5-point Likert-scale. We counted
the individual contents of one drawing per participant. We
also asked the participants for a clear yes or no statement as to
whether they would implement CWs in their APIs.

Limitations
This sample is not representative for all developers: Our par-
ticipants came from Germany and notably and to our frustra-
tion, only men participated in our study (cf. Table 1). We
attempted to recruit women by directly emailing female devel-
opers, which, with more than 92% developer roles in Germany
being filled by men [36], proved to be hard. Three women
signed up for the FGs, however, two did not respond to an
appointment request and one did not fulfill the qualifying re-
quirement of having any development experience. Therefore,
this study represents the views of local male developers.

All results are an artifact of our participants’ opinions and ex-
periences. The group compositions may also have influenced
participants’ statements. All participants of our second group
work in different areas and project teams in the same software
company. This is also reflected in their self reported program-
ming experiences (cf. Table 1). We were able to represent a
broad spectrum of experiences with programming languages
and software types in our sample, which is a prerequisite for
answering our research questions.

Symmetric encryption is one of the most common tasks with
a CAPI [31], therefore we used RC4 as an example in the
FGs. RC4 is typical for insecure encryption and transferable
to cases in which other insecure features are used, like hashing
algorithms or API parameters. It is not representative of all
types of security issues with CAPIs. Further studies are re-
quired to compare and evaluate different designs and identified
aspects of this work to gradually develop a mature guideline.

RESULTS
In the following, we report the results of our FGs. Each section
refers to one of the four research questions (cf. Introduction).

RQ1 - Participatory Warning Message Design
The participatory design approach is based on three different
study artifacts. In a first step, we asked our participants to col-
lect helpful information on a pinboard, rating each suggestion
individually on a five point Likert scale (cf. Figure 1). We
then asked them to independently outline an ideal message (cf.
Figure 2 and Figure 3) and to evaluate a proposed warning
design by Gorski et. al [17] (cf. Figure 4).

Rating of Helpful Information
All participants had concrete ideas about helpful CW mes-
sage content. However, most of the proposals were discussed

Table 1. Demographic data of the focus group participants.

G
1P

1
G

1P
2

G
1P

3
G

1P
4

G
1P

5
G

1P
6

G
2P

1
G

2P
2

G
2P

3
G

2P
4

G
2P

5
G

2P
6

G
2P

7
G

2P
8

G
2P

9

G
3P

1
G

3P
2

G
3P

3
G

3P
4

G
3P

5
G

3P
6

G
4P

1
G

4P
2

G
4P

3
G

4P
4

Profession
softw. dev. in industry 1 - 3 - 5 -

system administrator - - - - - - - - - - - - - - - - - - - - - - -
industrial researchers - - - - - - - - - - - - - - - - - - - - - - - -
academic researcher - - - - - - - - - - - - - - - - 4 - - - - - - -

bachelor student - - - - - - - - - - - - - - - - - - - - - - - -
other - - - - - 2 - - - - - - - - - - - - - - - - - - -

Software
web applications - - - - - - -

mobile applications - - - - - - - - - - - - - - - - - - - -
desktop applications - - - - - - - - - - - - - - - - - - - - -

embedded systems - - - - - - - - - - - - - - - - - - - - - -
enterprise software - - - - - - - - - - - - - - - - - - - - - -

front-end - - - - - - - - - - - - - -
back end - - - - - -

software for developers - - - - - - - - - - - -
other - - - - - - - - - - - - - - - - 6 - - 7 - - - - -

Language
Python - - - - - - - - - - - - - - - - - - - - -

C++ - - - - - - - - - - - - - - - - - - - - -
Java - - - - - - - - - - - - - - - - -

C - - - - - - - - - - - - - - - - - - - -
C# - - - - - - - - - - - - - - - - - - - - - - -

PHP - - - - - - - - - - - - -
JavaScript - - - - - - - - - - - -

Go - - - - - - - - - - - - - - - - - - - - - -
Ruby - - - - - - - - - - - - - - - - - - - - - -
other - 8 - - - - - - - - - - - - - - - - 9 10 - - - - -

Education/Experience
PhD - - - - - - - - - - - - - - - - - - - - - - - -

master degree - - - - - - - - - - - - - - - -
bachelor degree - - - - - - - - - - - - - - -

IT Specialist (Certified) - - - - -
years developing 8 9 6 15 10 10 6 6 5 2 11 9 4 4 18 5 20 11 23 19 3 20 1 3 12

working years 3 7 6 6 8 2 6 6 1 2 6 8 3 4 18 3 5 11 20 15 3 11 1 2 5

Demographics
gender m

age 32 32 30 30 29 32 40 28 22 21 31 26 27 30 43 24 37 37 42 34 20 37 28 28 31
1consultant, 2cross-process coordination with focus on software architecture, 3apprenticeship as application developer, 4research software engineer,

5managing director, 6workflow systems for scientific operation, 7high performance computing, 8Kotlin, 9Objective-C, 10Fortran

Table 2. Code group descriptions.

Code group RQ Description
Developer Console Activities 1 Things you do with a console or activities you use the console for.
Developer Console Properties 1 Properties of a development console.
Developer Console Types 1 Different types or consoles, even in terms of differences in operating systems.
Documentation 1 Statements about the documentation of APIs and program code.
Security Feedback 3 Particularities of warnings in a security context and differences to other warnings.
Software Development Tools 2 Tools for software development that are addressed.
Software Environment 2 Statements about an environment in which software is developed or executed.
Warning Content Negative 1 Warning content that is undesired, unimportant or unhelpful - contra arguments.
Warning Content Positive 1 Warning content that is desired, important or helpful - pro arguments.
Warning Design in General 1 General statements about console warning design not relating to content or properties.
Warning Display Location 2 Where, in addition to the console, a warning is also displayed.
Warning Implementation 4 Aspects of implementing console warnings in APIs.
Warning People Involved 2 People involved when a warning is displayed.
Warning Processing Practices 2 About working with a warning or processing warnings.
Warning Properties Negative 1 Negative properties of warnings in the console that are not represented by warning content.
Warning Properties Positive 1 Positive properties of warnings in the console that are not represented by warning content.
Warning Purpose 3 The purpose of a warning message. What is to be achieved by the warning?
Warning Reason 3 The reason of a warning message. Why is a warning given?
Warning Target Group 1 Persons addressed by a warning.
Warnings Reactions 1 Developers’ reactions to warnings or how they deal with the situation.
Weak Crypto Use Case 1 Reasons why an insecure API call is used.

Figure 1. Participants’ rating results of helpful aspects as part of a secu-
rity warning for a CAPI (step six and seven of the study protocol). Grey
labels indicate how many groups have listed the items.

controversially mainly because developer consoles are used
for diverse use cases (cf. Section RQ2 - Warning Context)
and should therefore not be overloaded with unimportant or
unnecessary information. In all groups, at least one participant
mentioned the aspects of source code location, title message,
link to external resources, and alternatives for discussion (cf.
Figure 1). Three groups discussed an option to deactivate
the warning. Since these aspects were mentioned in several
groups we consider them particularly relevant. 12 additional
aspects were named in single groups. The rating also shows
content that participants consider helpful but exclude as part
of a console warning.

An unanimous agreement can only be found for two aspects.
First, the exact source code location to which the warning
refers:“With file, line, and code you find the place.” (G4P1)1,
which is preferably clickable to quickly reach the problem
code:“I would like [...] to have a direct link to it” (G1P2).
Second, a clear title message:“A short title that precisely de-
scribes the actual problem, unsafe cryptographic algorithm
RC4” (G2P7). In the following, we report reasons why partic-
ipants strongly disagreed with some content.

A direct link to external resources e.g. documentation that
belongs to the API or the problem is generally desirable to get
information fast:“Somehow you have to be able to find some-
thing on the internet in case of doubt. The best is if the link
is directly included” (G3P1). However, some developers find
a link unnecessary because “I can copy error messages and
throw them into Google myself.” (G2P1) or “[...] you take the
name and find out what this algorithm actually does, because
the algorithm is described” (G1P1). Another prerequisite is
the availability of online resources:“So a link, yes, but please
not only because websites disappear. [...] [T]here should
please be more [information] instead of just a link” (G3P2).

1All quotes have been translated from German into English.

Figure 2. Number of focus group participants that used or did not use
a specific item for cryptography warning content in their drawing (step
eight of the study protocol).

For similar reasons, our programmers disagreed with warning
identifiers like numerical IDs. “Without documentation, the
ID is good for nothing” (G2P8).

However, the rating shows that 12 developers take a critical
view (at least neutral) of suggesting an alternative. The con-
text of CAPIs is seen as complex. They doubt that a warning
can make a suitable suggestion:“I would be at least skeptical
with encryption whether one can make a generally valid state-
ment” (G3P3). “Because no one will be able to offer you a
fix for a broken cipher, because no one actually knows [...]
what the background was, why you took it in the first place. If
someone now tells you, hey, take this cipher with a key three
times as long, then unfortunately, I have to say, well, it’s just
bad, but it doesn’t fit [laughs]” (G1P1).

If the use of weak cryptography is a requirement or legacy sys-
tems need to be supported, a developer must ignore a warning
message. Because the warning can be annoying in this case,
our developers want to be able to disable it. Nevertheless,
participants argue that warnings are not the right place for
deactivation instruction. They suspect that it would be used
carelessly:“I could copy and paste [the code for deactivation]
and then I would have achieved exactly the opposite of what
I actually wanted [(security)]. So it’s counterproductive at
that point” (G3P5). Documentation is a more suitable place
for such information:“I’d put that on an external source. In
my opinion, you want it to be implemented correctly” (G2P5).
Online sources like documentations can easily be found by
search engines when needed:“If someone really wants to do
this, they’ll find ways to google it” (G2P7).

Deactivation should only happen temporarily in a developer’s
local environment:“[...] I turned this one warning off very
locally and still [inadvertently] put two of my warnings off as
well, which I didn’t see anymore” (G3P5). Developers can
also forget to undo the setting and miss important information
at a later date. “You still have to think twice if you want
it gone, maybe you need it again” (G3P2). It is also not
desirable to mute a warning for an entire team when working
in collaborative development:“I wouldn’t suggest [...] to put

————————————————————————–

Figure 3. Participants G3P3 (top) and G2P2 (bottom) drew these
mockup warnings when asked for their favorite cryptography warning
design (step eight of the study protocol). They are similar in content.

it in the code so that other users would check out the project
and also wouldn’t see the message anymore” (G2P3).

To our surprise, up to this point of the study, only FG three
discussed whether code examples should be available in the
console:“I mean a proposed solution is always bound to the
context. You can’t do that, it’s always different. Copy and paste
would rather not work” (G3P6). Interestingly, participant
G3P2 brought the aspect to the pinboard and changed his
opinion later:“No, I think I would run the risk myself to say
relatively quickly, aha, here is the solution, I don’t need to
think about it. This is also true for others I suppose (laughs)”.
Other FGs considered code examples in console messages
inappropriate:“I definitely don’t need a code example there.
This can be hidden behind a link” (G4P4). Code examples
should also not be hardcoded into warnings because they can
age or expire, which means they have to be maintained:“Yeah,
but it can change over time” (G2P2).

Drawings
A uniform result for a helpful CW message design in the
developer console was achieved in all four groups. The in-
dividual design drafts are characterized by their short and
concise form (cf. Figure 3). When evaluating the content
of drawings (cf. Figure 2), a clear break stands out with a
difference of 10 number of uses after the first five design as-
pects. 23 developers used a title message like “ARC4 has
security vulnerabilities!” (cf. Figure 3). 2 participants did not
make a drawing. The paper prototypes also revealed the use of
color (20) as an essential design aspect:“It is also important
to me that the warning is highlighted in color, differently from
an error” (G3P5). Participants described them as a code for
message classification and used them accordingly in the draw-
ings. The red color is associated with errors while yellow or
orange is mainly expected in case of a warning. In accordance
with the rating result, a source code location was present in
most prototypes. 19 developers decided to include a link to
external resources. Also, a message classification such as
"WARNING" clearly identifying the message was considered
as a valid part of the warning:“so it’s categorized, that you
know it’s a warning” (G4P3). Although three groups missed
it in the previous task (7) 17 participants used them in their
drawing. Slightly contrary to the rating results only 6 drawings
contained an alternative.

Figure 4. Participant G1P6 revised the warning tested by a previous
study [17] based on the focus group results and his own preferences (step
nine of the study protocol).

In addition to the five most frequent design elements, partic-
ipant G3P3 decided to draw a deprecation warning and to
give an improvement suggestion while G2P2 integrated an
option to show more content (cf. Figure 3). It offers to show
the problem code after clicking on the code location.

Evaluation of a Design Proposal
Reactions to the printout (cf. Figure 4) emphasize the warn-
ing size being out of question for most participants:“First I
thought if I could print it out as a PDF (laughs). So this form
would be far too much for me” (G4P2). Because four of the
five core design elements (message classification, title mes-
sage, coloring and location) are in the upper part this section
was assessed positively:“[...] but I find the basic warning, here
above [...] this should always be displayed no matter what the
user configured. I think this is the key information” (G2P8).
Similar to participant G1P6 who made the green check marks
in Figure 4, developer G2P8 wants a link to detailed external
resources directly at hand:“I would prefer to directly have the
link up here in "what’s the secure way". I have to come to
the bottom to be able to get more information”. However, the
red color was found to be inappropriate as it usually indicates
error messages:“It’s very present up here for a warning. It
sounds more like an error, something you can’t compile with.
If it’s so important, then maybe Warning is the wrong level.
[...] It looks like a warning that wants to be an error” (G4P1).

RQ2 - Warning Context
Our developers reported that a console is an important part of
their tool set. It is needed during development for building and
compiling, “It’s a nice summary of all things to see during a
build process” (G3P4). These actions are frequently repeated
especially when testing or debugging code. It is also a use-
ful tool for getting feedback about events at runtime because
information about software internal events are typically not
shown in the GUI for end-users. “I don’t find any reason
for a program crash inside the application. Every relevant
information is given to the console [...]” (G3P6). This means

Figure 5. Amount and destination of desired security feedback in the
development process.

the console is a central point for information in software devel-
opment:“The console is a central place, i.e., you always look
at it during the development process, i.e., you don’t have to
search long for the messages coming from all possible parts of
the system. Rather, they end up there, at a defined step during
the development process” (G4P1).

The FGs addressed different types of warnings like updates,
deprecation, linting, and security warnings. This means secu-
rity feedback competes with any other information within a
console. Due to the amount of information gathered in it, the
console can appear overloaded and data processing becomes
necessary to find important information. “Yeah, obfuscating
output. If you just have something that produces so many
warnings that the one important point is not noticeable any-
more” (G1P1). This explains why a short and concise warning
is mostly preferred. Thus, in general, warnings draw attention
to problems or negative consequences that could otherwise be
overlooked. Participants reported to appreciate warnings:“You
can change an implementation by a warning message before a
real error occurs.” (G2P7)

While this study set out to study cryptography console warn-
ings, participants were interested in designing not only for the
console, but felt strongly about different needs for different
contexts. FGs generally agreed that different use cases call for
different types of information. When rating potential helpful
warning content (cf. Section Rating of Helpful Information)
G1P1 stated:“A lot of things are so situation-dependent for me.
There are situations where it makes total sense and there are
situations where it just bothers me”. To gather more insights
to this particular aspect, we extract suggestions for what devel-
opers want in the contexts that were discussed (cf. Figure 5).

Console CWs should initially provide only the most important
information. Nevertheless, developers value an option to reach
information quickly even in the console to bypass searching
in a documentation or via search engines:“I could also just
copy the warning and type it into Google and see what the
community has done with it. But if I can get the solution by us-
ing an optional parameter, then it’s really valuable.” (G1P2),

“[...] if you have the possibility to directly output something
like that, you’ll get much faster with the development” (G1P5).
Also, a specific context like a server environment may require
to add more content to a console warning as described by
G3P4:“I would like to have the source code in any case, yes,

because it shows me the source of the error. Then I don’t have
to open a file when I’m on a Continuous Integration server or
somewhere else. We are talking about the console here, and I
often have log messages in the console but not the file where it
comes from at hand. Then I would like to see it at this place in
the console.”

Log output shown in a console is not stored permanently by
default. One option is to store the information in a log file
for later use. But also in this environment, it is not generally
appreciated by developers to put all helpful information in
these files:“I just have a project with about 130,000 lines of
MATLAB code that raises a couple of 1000 warnings. I don’t
want to see a letter page for each one in the log file. Because
then I can’t do anything with it anymore” (G3P4). The high
number of messages, warnings or errors is particularly impor-
tant in this context. Participants speak of storing feedback
information in parallel at different locations in different ver-
sions. “I want to be able to pipe it. So in the case of 5000
lines, I can pipe my output into a log file, but still, see my
warnings on the console.” (G3P5), “[...] I can just look in the
log afterwards and there it is written in detail” (G3P2). To
support this control of information flow, at least two warning
versions differing in the amount of information are necessary.
We conclude, for cryptographic warnings, both in consoles
and in log files, additional security advice should only be given
on request. However, the demand for conciseness does not
continue for IDEs and post-processing reports.

An IDE offers significantly more graphical interaction possi-
bilities with the developer than command line tools. For this
type of development environment, participants expressed a
clear need for rich, helpful information. Consequently, the
additional content of Figure 4, including a problem explana-
tion, improvement suggestion, code example, and deactivation
instruction were perceived positively:“I want the IDE to high-
light and underline this use of ARC4.new as described here
[refers to Figure 4], and if I’d move the mouse over it and see
the text, I would say it would be cool” (G3P3). An IDE also
offers an extensive feature set, which can be used to further
process the given information of a warning message:“In the
IDE you have a display for problem cases. This is a list with
only one headline. You can unfold it, there are additional
details. By double-clicking, it jumps to the code position. This
is the environment where I want to have this level of detail
[refers to Figure 4]. A small side window opens with the
detail view, also directly loading this website. Where code
snippet exchange mechanisms from the IDE can be used di-
rectly” (G4P1). Participant G3P5 summarized:“So there’s
good warnings, there’s bad warnings. In many cases they are
still bad and hidden. But especially with IDE tools it is much
more comfortable to work with them if you get your warnings
while writing code, not only in the console, afterwards”.

The draft in Figure 4 was also perceived positively as a report
generated from downstream processing of console output:“So
in Jenkins [automation server software [21]] I’d find that ok in
terms of size, but if I saw that locally while developing, I’d find
it too much.” (G2P8), “But definitely, that’s how expressive I
would like to see it in my Jenkins” (G2P9).

Documentation is an integral part of an API [30]. The docu-
mentation was often mentioned by the developers when they
talked about a link in the warning message. According to the
preferences in our FGs, documentation should provide the
most comprehensive information, so that you can find reliable
information directly from the API developers when you need
it:“A reliable documentation where I can find out if I want
to do anything about the warning. So I would like to have a
decision guide if I want to get rid of this warning now and
maybe how I can fix it” (G3P1). And again, the detail level
of the example in Figure 4 was accepted in this context:“If it
were an inline documentation, I would find it well structured.
For a warning message, it is clearly much too long.” (G3P4).

RQ3 - Cryptography Warning Specifics
In this section, we report on four aspects that are specific to
console CWs; three of them deal with decisions on the code
implementation level when designing a CAPI. By considering
the specific context of an encryption algorithm, some partici-
pants to our surprise questioned their design approach towards
the end of the FG. They raised controversial design questions
which we present by discussing participants’ different opin-
ions.

Quantity means importance? While generally perceived
as annoying or overloaded, an extensive warning as shown
in Figure 4, which tries not only to draw attention to the
problem but also gives instructions for action and points out
risks, may indicate importance. The spontaneous reaction
of developer G2P8 was:“Wow, that must be a serious error
[group laughs]”. Later he explained:“I had two feelings about
it. The first was: too much text. The second feeling was: but
okay, if it’s that much, it must be something bad.”. Participant
G3P3 stated:“In general, I find such a thing too extensive. In
the special case of cryptography, however, I think it might
be useful. Because this background knowledge cannot be
taken for granted in the developer community in general.”.
But G1P1 contradicts at this point “But the importance of a
problem doesn’t depend on how many lines of text my program
uses to tell me.It depends on the problem and the program can’t
decide that. Only I as a developer can do that.”. G3P4 took
also a clear position:“I would switch it off immediately or
change the programming language [group laughs]. It doesn’t
fit to my way of working at all.”. From these statements, it
becomes clear that an overly extensive warning will not be
accepted by some developers. This is a quality feature of an
API and can be decisive for its success. For this reason, we
recommend considering conciseness when implementing API
warnings. Additional content should be tailored as closely as
possible to the needs of API users. If possible, developers
should be able to get more information by using a feature of
the programming language or environment.

Warning or error? Participants clearly distinguished be-
tween warnings and errors:“At some point, someone has de-
fined a log level. An error is a defect terminating the flow of
the program, which causes my application to stop working
correctly. That is not the case. The cipher algorithm works,
it’s just not secure and therefore it’s definitely nothing higher
than a warning” (G1P1). They generally work with errors,

and do not necessarily engage with warnings that can be ig-
nored:“Warnings can be ignored at first [laughs].” (G1P4),

“I would first ignore the warning and focus on the overall goal
that I want to achieve and perhaps later dedicate myself to the
problem” (G1P2). These statements underline the need for fur-
ther research in the field of API warnings, as this reaction may
question the effectiveness of security warnings in consoles.
Studies should investigate whether this is a normal behavioral
pattern in software development. This could mean that the
handling of insecurely used CAPIs becomes an unimportant
task once executable API calls have been found, even in the
presence of warnings. An important question is whether and
how this risky assessment can be influenced in the develop-
ment process. However, our participants generally consider
security feedback and security console warnings to be impor-
tant and raised the question of attitude:“This is a question
of conscience, yes, how do I deal with my software, which I
deliver at the end.” (G2P9). Implementing CWs as errors to
increase awareness was not proposed by any group. While our
participants did not explicitly mention this possibility, some
development tools can be configured to treat warnings as er-
rors [9]. Thus, developers can increase their awareness for
warnings if a program crashes, which is also addressed in the
proposal of severity levels for CWs.

Severity Level: Concerning ignoring warnings, G2P7 took
the issue further:“Exactly, that’s why you have to reconsider if
that’s another special kind of warning. One that almost goes
in the direction of en error. Now you might have to look again,
if there are still differences in the warning classifications be-
tween serious and not so serious”. Our FGs raised the question
whether a severity level should express the importance of a
CW to indicate what will happen if developers choose not to
adhere. Also estimates of independent specialists could be
helpful:“Perhaps especially with algorithms is still interesting
to know what the expiry date is. So, if an authority publishes
a list, the algorithm is still recommended until day x and after
that, you might want to think about an alternative” (G4P2).
At least two participants pointed out that such an assessment
depends on the situational context:“I think this has more di-
mensions than just the log level. Because what does that mean
in this security area? Is the algorithm quickly crackable or
can it be bypassed? It’s a subject-specific decision on how
important it is, not a technical one.” (G4P1), “I think that
every developer has to consider what kind of application it is,
what kind of impact does it have? Is it an internal tool? Are we
developing it for a customer? What would happen if there was
a vulnerability? Because that’s the risk and every developer
has to keep that in mind.” (G2P5). A severity level could
supplement a message classification. Whether this would help
software developers assess risk or improve awareness for CWs
and security warnings needs further research.

Deprecation: For security reasons, some of the participants
had the thought to technically deprecate insecure features
rather than continue support:“I’d appreciate it if the API would
deprecate the function immediately and in the next version
only offer the decryption” (G3P1). However, this approach
would have a different consequence. Users would not be able
to update the API if they had to continue using the feature and

ignored warnings for this reason:“But there are also warnings
sometimes that say something is deprecated. Well, my good-
ness, then it’s just deprecated but I just currently need this
version. That’s the way it is. Then I ignore the thing.” (G2P8),

“For example, because I somehow have to create compatibility
to something existing that unfortunately uses this cipher, I
don’t want it, but I have to, then I’d not want it deprecated
[laughs].” (G3P4). A deprecation process cuts the feature
set of an API. Users of the API are forced to react, which
can be annoying. However, there must still be APIs available
so that developers can create compatibility with legacy sys-
tems. Thus, deprecating weak cryptographic features in APIs
to avoid insecure use should be considered carefully.

RQ4 - Attitude towards Implementation
Across FGs, 19 of 25 participants clearly stated as an API
designer they would implement a security warning into a CAPI
(one participant had to leave before this question was asked).
5 developers said they wouldn’t integrate a warning; 3 would
opt for deprecation and 2 would like to have the security
feedback in the documentation, but not in the console:“I’d
rather put it in the documentation, too. Because I see the time
effort that will be immense. And also the costs will definitely
go beyond the scope. You can rather keep a documentation
clean and reasonable” (G4P4).

DISCUSSION
The software developers in our study wish for console warn-
ings from CAPIs as a tool to prevent insecure API use and
most of them would implement this in their APIs as well. This
confirms the finding of Gorski et. al that CAPI warnings are a
helpful and effective tool for software developers [17].

Until now, only guidelines for end-user warnings could be
applied for CWs in the developer console. Following a partici-
patory design approach, we conclude that only two of the six
design goals of the guideline by Bauer et. al [11] can directly
be adopted in the concept of CAPI warnings: (1) “Be con-
cise and accurate” and (2) “Follow a consistent layout”. Our
findings emphasize that developers are not end-users, and API
producers should not apply guidelines for end-user warnings
as a starting point for CAPI warning design. To develop ap-
propriate recommendations, future research in API warnings
now has design suggestions at hand that were developed by
software developers based on their experiences and opinions.

As our results show, there is a requirement for conciseness for
CAPI in the developer console and log file environment. Study
participants suggested five core elements for CAPI warnings.
At first glance, these can also be applied generically to the
context of other API warnings. We suspect that these are
common design characteristics for API warnings in general.
However, our participants have expressed higher information
requirements for an API warning in environments such as the
IDE or CI reports as compared to the console. Developers par-
tially accept existing end-user guidelines if more information
is desired, which indicates an overlap between populations.
Some context-specific aspects for cryptography were consid-
ered helpful by some of our developers like a severity level,
a risk assessment, a recommendation of alternative crypto-
graphic algorithms, or a label to assess a CW’s quality. At this

point, a uniform design for all types of API warnings is not
sufficient. Also, aspects specific to CWs at the code implemen-
tation level were discussed. However, whether these presented
design aspects and approaches can be validated as guidelines
for specific environments or also apply to other types of API
warnings needs to be evaluated through further studies.

Our participants expressed some reservations about the ap-
proach of API integrated crypto warnings because they saw
the implementation as an increased workload. However, our
results show: A good initial design for CWs in the console
should be concise. The effort to implement this minimum re-
quirement can be regarded as comparatively low in comparison
with writing and maintaining documentation. Therefore our
findings may also serve as a starting point for API producers
or tool developers.

Due to their concise form, CWs in the console have the primary
purpose of alerting developers to a problem. This means
further relevant information has to be given to the developers
at a different locations, like log files, IDEs, post-processing
reports, and API documentation, in order to support them
in handling the problem. However, our results clearly show
that providing all the helpful information that our participants
desire (cf. Figure 1 and Figure 2) is out of scope for API
producers. External information relating to cryptography, such
as specifications, risk assessments or expiration times should
be published centrally by experts. API producers should make
these sources quickly reachable for API users by links, so they
do not have to look for it themselves and are less likely to find
insecure online information instead. CAPI producers’ focus
should be on providing information that relates to the use of an
API, like code examples and test cases for many use cases [4].

CONCLUSION
Insecure CAPI use is a critical issue for software security
with far-reaching consequences for users [31, 1]. Our work
contributes to a potential mitigation of the problem. While
previous work showed that API redesign [1], improved doc-
umentation [2] and better tool support [33] are promising
directions, we follow another line of research and improve
a proposal for CAPI based console security feedback [17].
Our participatory design approach helped to identify areas of
improvement for existing approaches. The FG sessions uncov-
ered specific design aspects for CAPI warnings compared to
other warnings in the developer console. Most of our partic-
ipants would implement such a security warning for CAPIs.
They designed these in the FGs, but went one step further:
They discussed how much information they need and prefer
in which phase of their development process. Our results can
support API developers and researchers in further developing
usable CWs.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers
and shepherd for providing valuable feedback; and all partici-
pants of this study for their generous voluntary participation.
This work was partially funded by the German Federal Min-
istry of Education and Research within the funding program
"Forschung an Fachhochschulen" (contract no. 13FH016IX6).

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson

Garfinkel, Doowon Kim, Michelle L. Mazurek, and
Christian Stransky. 2017. Comparing the Usability of
Cryptographic APIs. In 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, San Jose, CA, USA,
154–171. DOI:http://dx.doi.org/10.1109/SP.2017.52

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L. Mazurek, and Christian Stransky.
2016a. You Get Where You’re Looking for: The Impact
of Information Sources on Code Security. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, San
Jose, CA, USA, 289–305. DOI:
http://dx.doi.org/10.1109/SP.2016.25

[3] Yasemin Acar, Sascha Fahl, and Michelle L. Mazurek.
2016b. You are Not Your Developer, Either: A Research
Agenda for Usable Security and Privacy Research
Beyond End Users. In 2016 IEEE Cybersecurity
Development (SecDev). IEEE, Boston, MA, USA, 3–8.
DOI:http://dx.doi.org/10.1109/SecDev.2016.013

[4] Yasemin Acar, Christian Stransky, Dominik Wermke,
Michelle L. Mazurek, and Sascha Fahl. 2017. Security
Developer Studies with GitHub Users: Exploring a
Convenience Sample. In Thirteenth Symposium on
Usable Privacy and Security (SOUPS). USENIX
Association, Santa Clara, CA, USA, 81–95.
https://www.usenix.org/conference/soups2017/

technical-sessions/presentation/acar

[5] Joao Eduardo M. Araujo, Silvio Souza, and Marco Tulio
Valente. 2011. Study on the relevance of the warnings
reported by Java bug-finding tools. IET Software 5, 4
(August 2011), 366–374. DOI:
http://dx.doi.org/10.1049/iet-sen.2009.0083

[6] ATLAS.ti. 2019. ATLAS.ti 8 Mac User Manual, updated
for program version 8.4. [Online]. Available:
https://downloads.atlasti.com/docs/manual/

manual_a8_mac_en.pdf. (2019). Last accessed 8 January
2020.

[7] Dejan Baca. 2010. Identifying Security Relevant
Warnings from Static Code Analysis Tools through Code
Tainting. In 2010 International Conference on
Availability, Reliability and Security (ARES). IEEE,
Krakow, Poland, 386–390. DOI:
http://dx.doi.org/10.1109/ARES.2010.108

[8] Wei Bai, Omer Akgul, and Michelle L. Mazurek. 2019.
A Qualitative Investigation of Insecure Code
Propagation from Online Forums. In 2019 IEEE
Cybersecurity Development (SecDev). IEEE, Tysons
Corner, VA, USA, 34–48. DOI:
http://dx.doi.org/10.1109/SecDev.2019.00016

[9] Titus Barik, Denae Ford, Emerson Murphy-Hill, and
Chris Parnin. 2018. How Should Compilers Explain
Problems to Developers?. In 26th ACM Joint Meeting on
European Software Engineering Conference and
Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, New York, NY, USA, 633–643.
DOI:http://dx.doi.org/10.1145/3236024.3236040

[10] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth
Holmes, Jing Feng, Emerson Murphy-Hill, and Chris
Parnin. 2017. Do Developers Read Compiler Error
Messages?. In 39th IEEE/ACM International
Conference on Software Engineering (ICSE). IEEE,
Buenos Aires, Argentina, 575–585. DOI:
http://dx.doi.org/10.1109/ICSE.2017.59

[11] Lujo Bauer, Cristian Bravo-Lillo, Lorrie Cranor, and
Elli Fragkaki. 2013. Warning Design Guidelines.
Technical Report CMU-CyLab-13-002. CyLab,
Carnegie Mellon University. http://www.cylab.cmu.edu/
research/techreports/2013/tr_cylab13002.html

[12] Brett A. Becker. 2016. An Effective Approach to
Enhancing Compiler Error Messages. In 47th ACM
Technical Symposium on Computing Science Education
(SIGCSE). ACM, Memphis, Tennessee, USA, 126–131.
DOI:http://dx.doi.org/10.1145/2839509.2844584

[13] Joshua Bloch. 2008. Effective Java (second ed.).
Addison-Wesley, Upper Saddle River, NJ.

[14] Maria Christakis and Christian Bird. 2016. What
Developers Want and Need from Program Analysis: An
Empirical Study. In 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE).
ACM, New York, NY, USA, 332–343. DOI:
http://dx.doi.org/10.1145/2970276.2970347

[15] Arnal Dayaratna. 2018. IDC’s Worldwide Developer
Census, 2018: Part-Time Developers Lead the
Expansion of the Global Developer Population. [Online].
Available: https://www.idc.com/getdoc.jsp?containerId=
US44363318. (October 2018). Last accessed 8 January
2020.

[16] Peter Leo Gorski and Luigi Lo Iacono. 2016. Towards
the Usability Evaluation of Security APIs. In 10th
International Symposium on Human Aspects of
Information Security and Assurance (HAISA). CSCAN,
Frankfurt, Germany, 252–265.
https://www.cscan.org/?page=openaccess&eid=17&id=287

[17] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,
Christian Stransky, Sebastian Möller, Yasemin Acar,
and Sascha Fahl. 2018. Developers Deserve Security
Warnings, Too: On the Effect of Integrated Security
Advice on Cryptographic API Misuse. In Fourteenth
Symposium on Usable Privacy and Security (SOUPS).
USENIX Association, Baltimore, MD, USA, 265–281.
https://www.usenix.org/conference/soups2018/

presentation/gorski

[18] Matthew Green and Matthew Smith. 2016. Developers
are Not the Enemy!: The Need for Usable Security APIs.
IEEE Security & Privacy 14, 5 (Sept 2016), 40–46. DOI:
http://dx.doi.org/10.1109/MSP.2016.111

[19] Randy Hodson. 1999. Analyzing documentary accounts.
Number 128 in Quantitative Applications in the Social
Sciences. SAGE Publications, Inc„ Thousand Oaks,
California.

http://dx.doi.org/10.1109/SP.2017.52
http://dx.doi.org/10.1109/SP.2016.25
http://dx.doi.org/10.1109/SecDev.2016.013
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
http://dx.doi.org/10.1049/iet-sen.2009.0083
https://downloads.atlasti.com/docs/manual/manual_a8_mac_en.pdf
https://downloads.atlasti.com/docs/manual/manual_a8_mac_en.pdf
http://dx.doi.org/10.1109/ARES.2010.108
http://dx.doi.org/10.1109/SecDev.2019.00016
http://dx.doi.org/10.1145/3236024.3236040
http://dx.doi.org/10.1109/ICSE.2017.59
http://www.cylab.cmu.edu/research/techreports/2013/tr_cylab13002.html
http://www.cylab.cmu.edu/research/techreports/2013/tr_cylab13002.html
http://dx.doi.org/10.1145/2839509.2844584
http://dx.doi.org/10.1145/2970276.2970347
https://www.idc.com/getdoc.jsp?containerId=US44363318
https://www.idc.com/getdoc.jsp?containerId=US44363318
https://www.cscan.org/?page=openaccess&eid=17&id=287
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
http://dx.doi.org/10.1109/MSP.2016.111

[20] Luigi Lo Iacono and Peter Leo Gorski. 2017. I Do and I
Understand. Not Yet True for Security APIs. So Sad. In
Second European Workshop on Usable Security
(EuroUSEC). Internet Society, Paris, France, 1–11.
https://www.ndss-symposium.org/wp-content/uploads/

2018/03/eurousec2017_15_LoIacono_paper.pdf

[21] Jenkins. 2020. Jenkins User Documentation. [Online].
Available: https://jenkins.io/doc/. (2020). Last
accessed 8 January 2020.

[22] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill,
and Robert Bowdidge. 2013. Why Don’t Software
Developers Use Static Analysis Tools to Find Bugs?. In
35th International Conference on Software Engineering
(ICSE). IEEE, San Francisco, CA, USA, 672–681. DOI:
http://dx.doi.org/10.1109/ICSE.2013.6606613

[23] Amy J. Ko and Brad A. Myers. 2003. Development and
evaluation of a model of programming errors. In IEEE
Symposium on Human Centric Computing Languages
and Environments (HCC). IEEE, Auckland, New
Zealand, 7–14. DOI:
http://dx.doi.org/10.1109/HCC.2003.1260196

[24] Amy J. Ko and Brad A. Myers. 2004. Designing the
Whyline: A Debugging Interface for Asking Questions
About Program Behavior. In SIGCHI Conference on
Human Factors in Computing Systems (CHI). ACM,
Vienna, Austria, 151–158. DOI:
http://dx.doi.org/10.1145/985692.985712

[25] Amy J. Ko and Brad A. Myers. 2005. A Framework and
Methodology for Studying the Causes of Software
Errors in Programming Systems. Journal of Visual
Languages & Computing 16, 1-2 (Feb. 2005), 41–84.
DOI:http://dx.doi.org/10.1016/j.jvlc.2004.08.003

[26] Amy J. Ko, Brad A. Myers, and Duen Horng Chau. 2006.
A Linguistic Analysis of How People Describe Software
Problems. In Visual Languages and Human-Centric
Computing (VLHCC). IEEE, Brighton, UK, 127–134.
DOI:http://dx.doi.org/10.1109/VLHCC.2006.3

[27] Richard. A. Krueger and Mary Anne Casey. 2015. Focus
Groups: A Practical Guide for Applied Research, 5th
Edition. SAGE Publications, Inc„ Thousand Oaks,
California.

[28] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali,
Mira Mezini, Eric Bodden, Florian Göpfert, Felix
Günther, Christian Weinert, Daniel Demmler, and Ram
Kamath. 2017. CogniCrypt: Supporting Developers in
Using Cryptography. In 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE).
IEEE, Urbana-Champaign, IL, USA, 931–936. DOI:
http://dx.doi.org/10.1109/ASE.2017.8115707

[29] Brad A. Myers and Amy J. Ko. 2003. Studying
Development and Debugging to Help Create a Better
Programming Environment. In Workshop on
Perspectives in End User Development, ACM
Conference on Human Factors in Computing Systems.
ACM, Fort Lauderdale, FL, USA, 65–68.

[30] Brad A. Myers and Jeffrey Stylos. 2016. Improving API
Usability. Commun. ACM 59, 6 (May 2016), 62–69.
DOI:http://dx.doi.org/10.1145/2896587

[31] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric
Bodden. 2016. “Jumping Through Hoops": Why do Java
Developers Struggle With Cryptography APIs?. In 38th
International Conference on Software Engineering
(ICSE). ACM, Austin, Texas, 935–946. DOI:
http://dx.doi.org/10.1145/2884781.2884790

[32] Alena Naiakshina, Anastasia Danilova, Christian
Tiefenau, Marco Herzog, Sergej Dechand, and Matthew
Smith. 2017. Why Do Developers Get Password Storage
Wrong?: A Qualitative Usability Study. In 2017 ACM
SIGSAC Conference on Computer and Communications
Security (CCS). ACM, Dallas, Texas, USA, 311–328.
DOI:http://dx.doi.org/10.1145/3133956.3134082

[33] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar,
Michael Backes, Charles Weir, and Sascha Fahl. 2017.
A Stitch in Time: Supporting Android Developers in
Writing Secure Code. In 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS).
ACM, Dallas, TX, USA, 1065–1077. DOI:
http://dx.doi.org/10.1145/3133956.3133977

[34] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur
Rahman, Rad Akefirad, Donovan Ellis, Eliany Perez,
Rahul Bobhate, Lois A. DeLong, Justin Cappos, and
Yuriy Brun. 2018. API Blindspots: Why Experienced
Developers Write Vulnerable Code. In Fourteenth
Symposium on Usable Privacy and Security (SOUPS).
USENIX Association, Baltimore, MD, USA, 315–328.
https://www.usenix.org/conference/soups2018/

presentation/oliveira

[35] Justin Smith, Brittany Johnson, Emerson Murphy-Hill,
Bill Chu, and Heather Richter Lipford. 2015. Questions
Developers Ask While Diagnosing Potential Security
Vulnerabilities with Static Analysis. In 10th Joint
Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, Bergamo, Italy, 248–259. DOI:
http://dx.doi.org/10.1145/2786805.2786812

[36] Stack Overflow. 2019. Developer Survey Results 2019.
[Online]. Available: https:
//insights.stackoverflow.com/survey/2019#developer-

profile-demographics-gender-minorities-by-country.
(2019). Last accessed 8 January 2020.

[37] Jeffrey Stylos and Brad Myers. 2007. Mapping the
Space of API Design Decisions. In IEEE Symposium on
Visual Languages and Human-Centric Computing, 2007
(VL/HCC). IEEE, Coeur d’Alene, ID, USA, 50–60. DOI:
http://dx.doi.org/10.1109/VLHCC.2007.44

[38] The European Parliament and the Council of the
European Union. 2016. Regulation (EU) 2016/679 of
the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to
the processing of personal data and on the free
movement of such data, and repealing Directive

https://www.ndss-symposium.org/wp-content/uploads/2018/03/eurousec2017_15_LoIacono_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/03/eurousec2017_15_LoIacono_paper.pdf
https://jenkins.io/doc/
http://dx.doi.org/10.1109/ICSE.2013.6606613
http://dx.doi.org/10.1109/HCC.2003.1260196
http://dx.doi.org/10.1145/985692.985712
http://dx.doi.org/10.1016/j.jvlc.2004.08.003
http://dx.doi.org/10.1109/VLHCC.2006.3
http://dx.doi.org/10.1109/ASE.2017.8115707
http://dx.doi.org/10.1145/2896587
http://dx.doi.org/10.1145/2884781.2884790
http://dx.doi.org/10.1145/3133956.3134082
http://dx.doi.org/10.1145/3133956.3133977
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://www.usenix.org/conference/soups2018/presentation/oliveira
http://dx.doi.org/10.1145/2786805.2786812
https://insights.stackoverflow.com/survey/2019#developer-profile-demographics-gender-minorities-by-country
https://insights.stackoverflow.com/survey/2019#developer-profile-demographics-gender-minorities-by-country
https://insights.stackoverflow.com/survey/2019#developer-profile-demographics-gender-minorities-by-country
http://dx.doi.org/10.1109/VLHCC.2007.44

95/46/EC (General Data Protection Regulation). Official
Journal of the European Union, L119/1. [Online].
Available: http://data.europa.eu/eli/reg/2016/679/oj.
(2016). Last accessed 8 January 2020.

[39] Tyler Thomas, Bill Chu, Heather Lipford, Justin Smith,
and Emerson Murphy-Hill. 2015. A study of interactive
code annotation for access control vulnerabilities. In
2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, Atlanta,
GA, USA, 73–77. DOI:
http://dx.doi.org/10.1109/VLHCC.2015.7357200

[40] V. Javier Traver. 2010. On Compiler Error Messages:
What They Say and What They Mean. Advances in
Human-Computer Interaction 2010, Article 3 (Jan.
2010), 26 pages. DOI:
http://dx.doi.org/10.1155/2010/602570

[41] Michael Whitney, Heather Lipford-Richter, Bill Chu,
and Jun Zhu. 2015. Embedding Secure Coding
Instruction into the IDE: A Field Study in an Advanced
CS Course. In 46th ACM Technical Symposium on
Computer Science Education (SIGCSE). ACM, Kansas
City, Missouri, USA, 60–65. DOI:
http://dx.doi.org/10.1145/2676723.2677280

http://data.europa.eu/eli/reg/2016/679/oj
http://dx.doi.org/10.1109/VLHCC.2015.7357200
http://dx.doi.org/10.1155/2010/602570
http://dx.doi.org/10.1145/2676723.2677280

	Introduction
	Related Work
	Methodology
	Study Protocol
	Recruitment
	Participants
	Data Analysis
	Limitations

	Results
	RQ1 - Participatory Warning Message Design
	Rating of Helpful Information
	Drawings
	Evaluation of a Design Proposal

	RQ2 - Warning Context
	RQ3 - Cryptography Warning Specifics
	RQ4 - Attitude towards Implementation

	Discussion
	Conclusion
	Acknowledgments
	References

