
It’s like flossing your teeth: On the Importance and Challenges of
Reproducible Builds for Software Supply Chain Security

Marcel Fourné ∗, Dominik Wermke†, William Enck ‡, Sascha Fahl †, Yasemin Acar ¶
∗Max Planck Institute for Security and Privacy, Bochum, Germany, marcel.fourne@mpi-sp.org

†CISPA Helmholtz Center for Information Security, Germany, [first.last]@cispa.de
‡North Carolina State University, Raleigh, North Carolina, USA, whenck@ncsu.edu
¶Paderborn University, Germany, George Washington University, USA, acar@gwu.edu

Codebook

1. Background
a. Professional Experience
b. Joining project

i. Interests
2. Reasons

a. (non-)technical
i. Internal and External drivers

A. Compilers work like mathematical functions
B. Broken expectations
C. Want to do/have quality
D. Want to build infrastructure
E. Wants to work on leaf packages
F. Self-guided exploration
G. Source code is out in the open, so anybody

can see it
H. Build speed/caching

ii. Community requests
A. Snowden leaks/security incident/privacy pro-

tection
iii. Security for developers

b. Threats
i. Specific threats

ii. Incidents or requirements
A. Specific incident found by reproducible

builds
c. Project decision process

i. Started themselves independently
ii. Consensus

iii. Corporate decision/management
3. Process

a. People involved
i. Communication

ii. Detractors
b. Starting topic

i. Build process
A. CI or other build infrastructure
B. Version pinning

1. compiler version
2. transitive dependencies

ii. Upstream interaction
A. Community building

1. Documentation work
B. Communication

1. Patience necessary
2. Good communication skills more neces-

sary than expected
C. Reproducible Builds buy-in
D. Common community requests
E. Receptive upstream
F. Receptive compiler authors
G. Patch polishing was necessary
H. Upstream rewrote patches themselves

iii. Decision criterion for reproducibility
4. Tooling

a. Helpful tools used
i. Integration into build process

b. Other resources used
5. Obstacles

a. Technical
i. Build date included, SOURCE_DATE_EPOCH

ii. Build directory included in full,
BUILD_PATH_PREFIX_MAP

iii. Compiler included randomness (symbols, ...)
iv. Profile Guided Optimization (PGO)
v. Cryptographic signatures included in binaries

6. Helpful factors
a. Self-effective participants

7. Target changes
8. Changes on starting over

a. Regret not doing more outreach
9. How specific

a. Direct port of procedures and tools
10. Misc

a. Bootstrappable Builds

https://orcid.org/0000-0003-4442-0085
https://orcid.org/0000-0002-3043-8092
https://orcid.org/0000-0002-5644-3316
https://orcid.org/0000-0001-7167-7383


Questionnaire

Intro
• Thanks: Thank you very much for offering your valu-

able time for this interview. We are very grateful for
your contribution.

• Ready: Are you ready to start the interview?
• Structure: First off, I am going to talk about the

context and data handling, and if you agree with ev-
erything, we would then start with the interview.

Context
• We: We are researchers at [anonymized for submission]
• Our research: focuses on the area “Security impact of

and experiences with reproducible builds”.
• This interview is a start/exploration of internal pro-

cesses and decisions often not visible at the technical
level.

• For this interview:
– We are not judging security or technological

decisions of a project, we are just interested
in the underlying structures and processes.

– Projects are often very complex, if you don’t
know the answer, or cannot speak about a
question for any reason, just say “next”.

– We are not just interested in structures, but
also your personal opinions and experiences.

• Questions? Any questions about the interview context
so far?

Consent
• Voluntary: Your responses in this interview are entirely

voluntary, and you may refuse to answer any or all of
the questions in this interview.

• Duration: Duration of the interview depends a bit on
the duration of your answers,in our experience so far
about X to Y minutes.

• We will de-identify you and your projects in any pub-
lication and only include short quotes.

• We will send you a preprint before a potential publi-
cation, if you want.

• Recording: We would like to record this interview so
that we can transcribe the answers later
– The recording will be destroyed when we

transcribed the interview
• Questions? Any more questions about data handling or

recording?
• I will now start the recording
• “The recording is now on” SWITCH ON RECORD-

ING
• Restate consent question
Section 1 - Intro [Personal / General / Project]

1. To start, we are interested in your background and that
of [project we are interested in re: reproducible builds].
Please tell us a little bit about how you got involved?
a. Coursework?
b. Professional experience?
c. How did you get into [project]?

i. What did you find interesting about [project]?
ii. And how long have you been working on

[project]?
iii. Which programming languages are commonly

used in [project]?
d. [if [project] uses more than on

PL:] Specific programming language
background/experience?

i. Do you have experience with some/all of the
programming languages used in [project]?

2. Could you please elaborate a bit about your role in
[project]?
a. What packages do you work on, what do they

do?
b. How did you get from working generally on

[project] to working on reproducible builds?
3. Could you explain what reproducible builds mean to

you?
a. In the context of project
b. In general
In the context of our research, we’ll be talking
about reproducible builds in this interview.
When we say reproducible builds, we mean that
for each version of the project, anyone can take
the source artifacts and in the best case build a
package that is bit-for-bit identical at any point
now or in the future.
Comparison that two packages are built from the
same source should, at the very least, be possible
via human inspection.
Ideally, the comparison should be as automated
as possible.
We want to allow different parties to determine
if a binary package matches its source code,
eliminating possible backdoors during the build
process.

Section 2 - Reasons, Decisions
1. [project] has[/has not yet] made progress towards repro-

ducible builds. We’ll be very interested in the process
in a moment. Before we start on that, we are interested
in your reasons for making [project] reproducible?
a. Technical and also non-technical?

i. Internal/external drivers?
ii. Community requests (users vs. developers)?

iii. Security for developers? (by getting the software
out of your sole control, making the build en-
vironment on your machine less of a target for
attackers)

b. What threats are you protecting against?
i. Are there any specific threats?

ii. Specific incidents/requirements?
c. What were the reasons against making

[project] or individual packages fully repro-
ducible as of now? (not yet, or not at all)

2



d. How did the project decide? Who made these
decisions, what roles did they have?

Section 3 - Process, Tools

1. What [was/is/would be/will be] your process of making
[project] or individual packets reproducible?
a. When did you start?
b. Who were the people and roles involved in

this effort?
i. How did they communicate with each other?

(e.g., mailing lists, conferences/Bug Squashing
Parties, issues, calls. . . )

ii. Were there detractors?
c. What is your estimate of your time invested

into it?
i. Did that change over time?

d. Where did you start?
i. What was the strategy for choosing which pack-

ages to work on first?
(e.g., easy leaf packages first vs. important upstream

dependencies first)

1. a. i. What is your build process like?
A. Do you use some form of CI or other

build infrastructure?
B. What is the level of version pinning that

you do for releases?
1. Upstream compiler version subreleases?
2. Transitive dependencies?

ii. How do you interact with upstream projects used
in [project]?
A. Was there active community building,
B. communication,
C. buy-in into reproducible builds,
D. any insights on successful / unsuccessful

communication
E. (common) community requests [rb or

upstream]?
iii. How did you decide that a package is repro-

ducible?
(prompt: 100% reproducible artifacts vs. specific
test for reproducibility; explainable differences in
certain data fields)

1. [for libraries] Do you (want to) use other programming
languages in the library and if so, why?
a. Can you tell us about any interactions be-

tween programming language changes and
reproducibility efforts? Did one of them im-
pact the other?

2. What is your tech setup/specific tooling or other re-
sources to help you make [project] reproducible?
(e.g., prompt for diffoscope)

1. a. Please tell us about the tools or libraries you
built or used to help make [project] repro-
ducible?

i. Did you integrate any of them into the CI or
packaging utilities?
A. How did that go?

b. Were there any approaches, tools, that you
abandoned on your way to make [project]
reproducible?

i. Example: Binary diffing died
c. What type of tool – whether it exists or not

– would you have liked to have to help with
making your builds reproducible, or checking
for reproducibility?

d. Were there any other resources you used?
(e.g., documentation, knowledge bases, web-
sites)

Section 4 - Obstacles/Challenges, Facilitators
1. If there were any, please tell us about the obstacles

involved in making [project] reproducible?
a. Organizational (buy-in from different devel-

opers, not being able to do systemic changes
in different parts of the project)

b. Technical (hard dependencies on timestamps
for identifiers etc.)

c. Dependencies (upstream not being willing
to take patches, marking change requests as
invalid/WorksForMe)

d. Of the differences between different pro-
gramming languages and their communities,
which influenced your effort in [project]’s
reproducibility? And was that influence pos-
itive or negative? (bug reporting, error cul-
ture towards compiler changes, community
responses to questions)

2. Which factors were particularly helpful in making your
progress more manageable?

3. Did your target change due to difficulties in getting
[project] to be reproducible?
(e.g. any compromises)

Section 5 - Generalization / Lessons Learned
1. “If you had to start over, what would you do differ-

ently?”
a. Would using current tools solve a lot of the

problems you encountered?
b. Are there any programming language specific

things you wish you could have used?
2. What worked well, what didn’t work?

a. Can you tell us about the role of upstream
patches and how they help or hinder repro-
ducibility?

i. How did your effort change over time while other
packages worked on their reproducibility?

3. How specific would you say your process was to your
project? We are interested in what can be generalized
or already benefits other projects, and what’s specific
to yours.

3



a. In your personal opinion, do you think that
other projects could follow the same or simi-
lar procedures? (direct port of technical mea-
sures or organizational structures, similarities
between biggest hurdles)

4. What would you recommend to other developers and
projects?

Outro
1. Is there anything else you would like to tell us about

reproducible builds, within or outside the scope of
[project]?

2. Is there something that we did not cover during the
interview but you would like to talk about?

Debrief
• SWITCH OFF RECORDING “The recording is now

off”
• Could you recommend other projects or persons we

could invite for an interview? They should have at-
tempted to make their project reproducible.

• Thank the participant again for their valuable time
• Do you want to get a preprint of our paper?

– If interested: what is your preferred contact
data?

∗ We will be in contact for a preprint

4



Motivational Matrix

Time Money Reputation Results

Research
Group

University

Development
Corporation

Security
Organization

Open Source
Project

End User

Government

Caching

Minimizing
manual

retesting

Build debug

Increased
development

speed

Deduplication

Smaller
binary

differences

Scientific
Reproduction

OpenSSF
scorecard

Quality

Cheaper
Builds

Ability to
build in

the future

Introspection

Chain of
security

Figure 1. Motivational matrix, joint work from a discussion session with attendees of the Reproducible Builds Summit 2022.

5


