
They Would do Better if They Worked Together:
The Case of Interaction Problems Between Password Managers and Websites

Nicolas HuamanC ∗ Sabrina Amft∗ Marten OltroggeC Yasemin Acar† ∗ Sascha FahlC ∗

CCISPA Helmholtz Center for Information Security
∗Leibniz University Hannover

†Max Planck Institute for Security and Privacy

Abstract—Password managers are tools to support users with
the secure generation and storage of credentials and logins
used in online accounts. Previous work illustrated that building
password managers means facing various security and usability
challenges. For strong security and good usability, the interaction
between password managers and websites needs to be smooth and
effortless. However, user reviews for popular password managers
suggest interaction problems for some websites. Therefore, to the
best of our knowledge, this work is the first to systematically iden-
tify these interaction problems and investigate how 15 desktop
password managers, including the ten most popular ones, are
affected. We use a qualitative analysis approach to identify 39
interaction problems from 2,947 user reviews and 372 GitHub
issues for 30 password managers. Next, we implement minimal
working examples (MWEs) for all interaction problems we found
and evaluate them for all password managers in 585 test cases.

Our results illustrate that a) password managers struggle to
correctly implement authentication features such as HTTP Basic
Authentication and modern standards such as the autocomplete-
attribute and b) websites fail to implement clean and well-
structured authentication forms. We conclude that some of our
findings can be addressed by either PWM providers or web-
developers by adhering to already existing standards, recommen-
dations and best practices, while other cases are currently almost
impossible to implement securely and require further research.

I. INTRODUCTION

Username and password combinations remain the dominant
authentication mechanism on the web. Although significant
effort has been invested into developing alternative authen-
tication solutions [36], [41], [52], [65] and helping users to
use more secure passwords [34], [69], many users still rely
on passwords that are easy to guess [35], [48], [71] and re-
use the same password for multiple accounts [46], [58], [72],
[73]. Alternative methods like FaceID or fingerprint sensors
for authentication also resort to passwords chosen during their
setup [38].

Online services are encouraged to deploy multi-factor
authentication (MFA) such as timed one-time-passwords
(TOTP) [40], [61]–[63] to address the password security
problems and strengthen account security, which still rely
on passwords as the first factor. To address the need for
passwords, the use of password managers (PWMs) is often
recommended for end-users. In a nutshell, PWMs are tools
to help users deal with credentials and reduce their mental
load for password creation, account login and credential
updates [1], [8], [12], [14], [15], [20], [22]. PWMs have
been researched extensively [47], [51], [56], [59], [60], [64];

previous research on PWMs mostly focuses on PWM security
issues and usability and adoption challenges. Multiple studies
researched the security of different PWM types, finding that
both browser-based and locally installed PWMs are vulner-
able to problems such as key theft or secret recovery from
temporary files, as well as weaknesses within typical features
such as autofill [64]. Other research focused on the usability
of PWMs and were able to show that user adoption of PWMs
is motivated by convenience of usage and usability [59].
While security benefits can also be a driving factor for PWM
adoption, in the majority of cases these where only mentioned
for accounts that users perceive as especially important.

Overall, previous work identified significant security and
usability challenges PWM providers should address to improve
overall password security [39]. However, in addition to the
previously identified challenges, PWM usability and adoption
also depend on how well PWMs and websites can interact
with each other [2], [17], [42]. Websites that do not accept
auto-generated passwords, prevent autofill and autologin of
stored credentials or make credential storage for accounts
complicated contribute to bad PWM usability and thwart
their adoption. Examples of poor PWM support in websites
are sites that manipulate forms using JavaScript or fail to
define input field attributes, making these interactions harder.
While these issues are discussed in online forums [2], [17]
and blog posts [42] and providers of web browsers suggest
novel mechanisms to better support PWMs (e. g. Apple’s
passwordrules [57]), a systematic analysis of poor interactions
between websites and PWMs that make their use unnecessarily
complicated or even impossible is missing so far. To the best
of our knowledge, our work is the first to investigate those
poor interactions reported by real PWM users, to analyze how
15 popular desktop PWMs deal with these circumstances and
to propose ideas based on our results for future PWMs and
websites for better PWM usability and password security on
the web.

In the course of the following work, we address the follow-
ing research questions:

RQ1: Which interaction patterns on the web are problematic
for password managers?

RQ2: How do PWM browser extensions handle these interac-
tions?

RQ3: What can be done to improve the interaction between
PWMs and websites?

To the best of our knowledge, this work is the first to in-
vestigate interaction challenges between browser-based PWMs
and websites that impact both password security and usability
and end-user PWM adoption. Based on the above research
questions, we make the following contributions.

Systematic Problem Survey — We perform a systematic
analysis of 3,319 reviews and issues users of 30 browser-based
PWMs report in the Chrome Web Store, and on GitHub. Based
on this analysis, we identify 39 interactions that demonstrably
hindered end-users using PWMs in real-world settings.

Minimal Working Examples (MWEs)1 — We build a
simple website including minimal implementations of the pre-
viously identified interactions PWMs struggle with, based on
the results of our systematic problem survey. With this website,
we can extensively test PWMs regarding their performance
and supported features.

PWM Problem Evaluation — We test 15 popular browser-
based PWMs on the 39 MWEs we implemented. Our analysis
shows that in many cases, PWMs have issues working with
websites that include complex or non-standard implementa-
tions, but also with standards like ”basic” HTTP Authentica-
tion.

Recommendations — We investigate existing web stan-
dards [3], [7], [10], [18], [44] in regards to the problems
we found to be most prevalent in our PWM evaluation, and
propose how existing standards and approaches can already be
used to solve most of the problems we discover. Furthermore,
we propose potential vectors for extensions of standards that
solve the remaining issues.

Detailed Replication Information — We provide an ex-
tensive replication package including the set of collected user-
complaints, the resulting code book, and the 39 MWEs derived
from the code book (cf. Section V-D. In addition, we provide
the implementations of the MWEs and demo screen captures
to replicate our approach (cf. Section V-D) along with our
results.

This work focuses on desktop PWMs and their browser
extensions. While we considered adding mobile PWMs, these
have very different requirements, as they can e. g. use APIs
provided by Android [4] and iOS [3] and are focused on user
installed apps.

The rest of the paper is organized as follows: We discuss
related work and the relevant background in Section II and
Section III. In Section IV we describe our systematic problem
survey based on real-world end-user feedback. Section V
details the analysis of 15 popular PWMs using our set of 39
MWEs. Finally, we discuss our findings and propose strategies
to mitigate the problems PWMs struggle with in Section VI.

II. RELATED WORK

While there have been many different attempts to replace
passwords as the main authentication method on the web,
none of the proposed alternatives were able to supersede them.

1In software development, MWEs are used to illustrate problems or bugs
within code while only consisting of the most relevant features [27].

Moreover, most attempts that improve authentication security
come with high costs in terms of decreased usability [37].
PWMs yield a solution to this problem by removing the need
to memorize passwords and storing them in a secure man-
ner, which enables users to choose stronger passwords [51].
Previous research already paid attention to several aspects of
PWMs. In the following section, we present an overview of
these works, focusing on PWM security and vulnerabilities as
well as usability and adoption.

PWM Security. Overall, different studies were able to show
that many popular PWM solutions are vulnerable to different
forms of attacks. In 2013, Zhao et al. [74] analyzed the
PWMs included in five different browsers and find severe
vulnerabilities as attackers can e. g. steal the files in which keys
are stored to decrypt them. As an alternative, they propose a
cloud-based approach. Similar to this, Li et al. [50] conducted
an analysis of five browser-based PWMs and identify 4 key
security concerns within bookmarklets, the UI, and classic
web or authorization vulnerabilities. While these studies were
focused on browser-based PWMs, in 2016 Gray et al. [47]
evaluated the security of KeePass, RoboForm and Password
Safe, three locally installed PWM applications. They reveal
security problems with e. g. secret information such as the
master password or database content recoverable from tem-
porary files, in some cases even after the applications were
terminated.

Although most of the research concerning PWM security
was conducted more than five years ago, recent work shows
that the problems are still persisting. In 2020, Oesch et al. [56]
were able to replicate previous studies and evaluate the secu-
rity of 13 PWMs. While they found improvements for several
features such as password storage or autofill security, they
were also able to reproduce severe vulnerabilities especially
within the password generation.

In 2014, Silver et al. [64] were able to show that especially
the autofill functionalities of PWMs are often vulnerable. They
review different types of PWMs and their various policies to
recognize relevant form fields, finding them susceptible to at-
tacks via e. g. modified web forms or unencrypted connections.

Furthermore, Zhao et al. [68] evaluated the top 4,000 Alexa
pages and found 86.3% of websites offering login fields
vulnerable to XSS-based attacks. As a solution, they proposed
an alternative approach in which only dummy input is entered
into the web form and the real password directly transmitted
in the respective HTTP request.

While previous work focuses on the security within PWM
applications, our research concentrates on the usability of
PWMs and their ability to adapt to frequent problems or edge
cases.

PWM Usability and Adoption. Several previous works focus
on the usability and adoption motivations for PWM usage. In
2006, Chiasson et al. evaluated the usability of two PWMs that
previous research proposed. Both showed significant problems
that did not only limit the usability, but in some cases lead

to security issues that lead to e. g. user misconceptions on
whether or not their passwords were protected [39].

Another usability study was conducted in 2010 by Karole
et al., who examined three different types of PWMs. They
chose a locally installed LastPass, a mobile KeePass version as
well as an USB-based RoboForm approach, finding that users
preferred the mobile variants despite the reduced usability
when compared to the local LastPass [49].

A series of 30 semi-structured interviews conducted by
Pearman et al. found differences in the user motivation to
adopt a PWM depending on its type. Their work suggests that
users of browser-based PWMs rated the convenience higher
while the users of separate stand-alone clients valued security
benefits more [59]. In 2020, Ray et. al. replicated this interview
study with a focus on older adults (>60 years old), finding that
older adults had higher mistrust of cloud storage and online
services in general, and noting that recommendations from
trusted people like family and friends provide motivators for
those older people [60].

Other recent work by Maclean et al. suggests that three
key factors influence an user’s decision to adopt a PWM: The
expectation that the tool performs well and improves their
workflow, the generation of a habit due to continued use and
trust in the security mechanisms within the PWMs [53].

While most works focus on novice users, Stobert et al. [67]
interviewed security experts about their own habits and usage
patterns and found similar motives on websites the participants
deemed less relevant. Secure behavior was often only shown
for accounts they perceived as important, suggesting that even
with expert users, PWM usage is not widely adopted.

Most studies that researched the usability of PWMs found
that convenience and usability were the primary deciding fac-
tors for adoption. These can be decreased by PWMs that do not
behave in the intended way, e. g. due to problems recognizing
relevant information such as password input fields. To mitigate
this, Stajano et al. proposed a html-based specification of
semantic labels for input fields to help PWMs find relevant
fields and correctly classify their main purpose [66].

To the best of our knowledge, our work provides the first
evaluation of PWMs based on real world problem reports. Our
research examines how well PWMs can deal with existing
edge cases. We evaluate the behavior of 15 major PWMs on
a set of MWEs for the previously analyzed problem reports.
In contrast to Stajano et al. who focused on the recognition of
input fields, our work aims to identify broader shortcomings
of PWMs by identifying widespread issues and recommending
possible solutions.

III. BACKGROUND ON PASSWORD MANAGERS

At their core, PWMs are tools to handle user credentials
(e. g. usernames and passwords) and to reduce their users’
mental load during password generation, account registration
and login, as well as credential updates. PWMs aim to improve
online account security by generating, storing and autofilling
distinct secure passwords for online accounts and therefore

compensating for end-users’ difficulties with creating and
remembering a myriad of secure and distinct passwords.

However, since handling user authentication is a security
critical problem, PWMs have been a focus for security re-
search, and prior work has discovered a multitude of issues
across all common PWMs [47], [50], [56], [64], [74]. Fur-
thermore, the multitude of approaches to implement password
based authentication on the web led to a number of usability
problems that limit the adoption of PWMs. Here, related work
has presented us with the requirements and expectations that
users have for PWMs [39], [49], [53] and discovered what
features of PWMs motivate users to use them [59], [60], [67].
The main reasons to adopt PWMs were discovered to be the
convenience of not having to remember passwords and the
time saved when a PWM supports the user by autofilling the
passwords. To provide these features however, a PWM has to
analyze a website, identify it and interact with the authentica-
tion mechanisms of the website. As we will demonstrate in our
user complaints evaluation (cf. section IV), PWMs currently
have to handle a large range of possible interaction patterns
to authenticate on websites.

Website

Javascript

URLHeaders

Forms

Browser Extension
Detect

service provider
Automatic

Login

Autofill known
credetials

Autosave new
credentials

Password Manager
Store

credentials

Store
credentials

Fig. 1. Interaction between PWMs and websites through the browser
extension.

A. Interaction with websites

Most desktop PWMs interact with websites through a
browser extension. They usually cooperate with a standalone
PWM application, or connect to a web service. The application
or web service handles the storage of user credentials; the
browser extension interact with the website. In this work
we focus on the interaction between PWMs and websites to
identify obstacles that can decrease usability.

Web Authentication. PWMs commonly provide the follow-
ing features in order to support users during their authentica-
tion workflow:

• Service Detection
• Credential Storage and autosave
• Providing Credentials and autofill
• Automatic Login or autologin
• Secure Credential Generation

Additionally, as we discovered during our analysis, one
obvious requirement for PWMs is to not interfere with a
website in a way that prevents users from accessing its
contents. In the following, we provide background information
and examples for each of these features, and how we handle
them in our work. We provide an overview in Figure 1.

Service Detection. This feature refers to the way password
managers determine which authentication data to use. The
most important factor is the URL of a website, which is usually
matched on domain-name level (e. g. example.com). PWMs
may or may not match different subdomains to the same
set of credentials (e. g. sub1.example.com, sub2.example.com)
or offer to store multiple accounts for different paths (e. g.
example.com/service1, example.com/service2).

Credential Storage. Storage of credentials represents the core
feature of password managers. From an usability perspective,
password managers can provide automatic creation of new
credentials when they detect them being entered on a website,
which we refer to as autosave. It can also offer to update
credentials when it notices different credentials being entered
for already stored accounts.

Providing Credentials. From a convenience point of view,
this is the second main feature password managers can provide
to support users. When a user accesses a service that the
password manager has stored credentials for, the password
manager can offer these credentials automatically. To provide
further convenience, the password manager may even attempt
to fill the credentials in the appropriate form-fields on a web-
site or provide them for authentication headers [44], commonly
refereed to as autologin.

Automatic Login. One rarer functionality across password
managers is to automatically log in (autologin) users without
being triggered at all when the user visits a website that the
password manager has stored credentials for. For the purpose
of our analysis, this feature includes everything required for
autologin and to submit the login request, without any previous
interaction by the user except to visit the site.

Secure Credential Generation. The final feature we want to
talk about for this analysis is the option to create credentials for
the user. Password managers can generate secure passwords
and offer them to the user during registration or password
change processes. From a user experience perspective, the
main features here relate to password policies, detecting and
enforcing them for the generated passwords. -

IV. USER COMPLAINTS EVALUATION

To identify interaction problems between PWMs and web-
sites users encounter, we collected and analyzed user feedback
for all PWMs listed in Table I. We used the identified list of
interaction problems to build MWEs for our second study in
the following section.

A. Choosing Password Managers (PWMs)

Since Chrome has the highest market share, we focus
our user complaints evaluation on PWMs that offer browser
extensions in the Chrome Webstore [21], [28], [32]. We
consider all PWMs that were downloaded at least 10,000 times
which should cover the majority of users. Table I provides an
overview for all PWMs we considered.

After selecting the PWMs, we aimed to find interaction
problems between PWM browser extensions and websites

TABLE I
PASSWORD MANAGERS FOR WHICH WE COLLECTED FEEDBACK

INCLUDING THEIR DOWNLOAD COUNTS.

Name Downloads

1 LastPass: Free Password Manager 10,000,000
2 Norton Password Manager 4,000,000
3 Avira Password Manager 3,000,000
4 Dashlane - Password Manager 3,000,000
5 1Password X – Password Manager 600,000
6 Bitwarden - Free Password Manager 500,000
7 RoboForm Password Manager 500,000
8 Keeper® Password Manager & Digital Vault 300,000
9 ThinkVantage Password Manager 200,000
10 Blur 100,000
11 RapidIdentity 100,000
12 Enpass extension (requires desktop app) 100,000
13 SafeInCloud Password Manager 80,000
14 KeePassXC-Browser 60,000
15 Password Depot Extension 50,000
16 Passbolt Extension 50,000
17 NordPass® Password Manager & Digital Vault 30,000
18 Zoho Vault 30,000
19 Password Manager Pro 30,000
20 MYKI Password Manager & Authenticator 20,000
21 Passwordstate 20,000
22 Kee - Password Manager 20,000
23 F-Secure KEY Password Manager 10,000
24 KeePassHelper Password Manager 10,000
25 Devolutions Web Login 10,000
26 SaferPass: Password Manager for Free 10,000
27 Steganos Password Manager 10,000
28 Trezor Password Manager 10,000
29 Advanced Password Manager 10,000
30 1Password X Beta – Password Manager 10,000

(RQ2, e. g. non-working autofill of login credentials). We only
consider browser extensions, since we expect users to mainly
use PWMs within popular web browsers. To identify high
impact problems and a measure of frequency or prevalence,
we decided to focus on user feedback and reviews for all
PWMs in Table I. We collected 3,319 instances of user
feedback for these PWMs. Using open coding (cf. Figure
2 for an overview of our coding process), we consolidated
feedback to construct MWEs to investigate these problems
across all PWMs and develop potential improvements. Below,
we present and discuss our user feedback evaluation and the
resulting interaction problems we identified.

B. Collecting User Feedback

For diversity and to reach saturation, we collected user
feedback from multiple sources. Since we selected PWMs
based on the availability of a Chrome Web Store extension, we
started collecting feedback from user reviews. Users can post
public reviews for each extension. Additionally, users can post
public support requests that extension providers can answer or
redirect to official support channels. Hence, Chrome Web Store
reviews are the main feedback source in this study.

Feedback taken from the Chrome Web Store in most cases
stems from end users, therefore containing non-expert opinions
and complaints.

To obtain more diverse feedback, we also collected expert
feedback containing more technical details and different use-

cases. While ticket and support systems for PWMs are usually
not publicly available, open source PWMs make detailed
histories of issues and solutions accessible in their repositories.
These issues are typically not submitted by average end-
users but more tech-savvy users and web developers. All open
source PWMs in our data set host their code on GitHub [16].
Hence, we included their GitHub issue history in our analysis.
We also considered including issues from larger browser
vendors, but for this analysis decided to focus on issues
within the realm of WebExtensions. In the remainder of this
section we provide details on our user feedback collection and
evluation.

Chrome Web Store User Reviews. Concerning feedback
from the Chrome Web Store, we collected and analyzed both
the user reviews and support requests as of 07/16/2020. We
collected up to 125 of the most recent reviews and support
requests for each PWM browser extension in Table V-C.
Only few PWMs had more reviews and we did not find new
interaction problems in additional reviews. Using a Python-
based Selenium web crawler [25], [26] we collected feedback
items and related meta information including the author, date
of posting and comments. To guarantee a correct problem
assessment, we dropped all reviews that were not in English or
German. Overall, we collected 2,947 user reviews and support
requests for 30 PWMs. In 15 PWMs did not offer a support
section or only linked to their official support system on the
Chrome Web Store page. For those, we limited our analysis
to user reviews. In total, we acquired 1,895 reviews in 30
PWMs’ review sections, but only 1,052 support requests in 15
PWMs’ support sections. Since reviews and support requests
are structured differently, we collected slightly different data.
For both, we collected the text itself as well as any comments
left by e. g. other users or support teams, the authors, the
date of the postings and which PWM the post refers to. Both
reviews and support requests included data unique to their
respective type: For reviews, this was a rating between one
and five stars awarded by the commenting users, for support
requests, users were able to add a title to their post, which we
both collected and considered as well.

GitHub Issues. We analyzed both open and closed issues on
GitHub that were created between 04/01/2019 and 07/17/2020
as well as updates to them until 08/12/2020. Similar to the
Chrome Web Store reviews and support requests, we limited
our collection to issues until 01/01/2020, as we did not find
new interaction problems in older issues. The issues were
collected using a crawler extension for Chrome [29], [30]. We
collected issues regarding PWM browser extensions for three
open-source PWMs (Bitwarden [12], KeePassXC [13], [14]2,
and Passbolt [15]) from five GitHub repositories. We extracted
the title, link, whether the issue was open or closed, and date
for each issue. Content wise, we looked at the complete thread
including issue discussion and resolution.

2KeePassXC contained browser extensions related issues in two repositories
for either the extension or client. We filtered for issues labelled as related to
the extension.

Data Slice

Full Dataset
(1/3 per
 Author)

Full Dataset

Interactions

Relevant
User
Complaints
(N=152)

Analyst

3 Authors
Independent

All Authors

All Authors

3 Authors
Together

Analysis Step

1. Screening & Loose Coding

2. Repeat with Different Data Slice

Github Issues
(If Available, N=398)

Chrome Webstore
Reviews (N=1352)

Chrome Webstore
Support Requests

(If Avaliable, N=729)

Dataset (2479 Feedback Items)

3. Merge Screening and Codes

4. Evaluate Themes and Codebook

5. Re-evaluate Dataset

6. Group Issues to Interactions

7. Evaluate Interaction Descriptions

Fig. 2. Methodology for our qualitative coding research user reports.

Overall, we collected users feedback from 372 issues, 1,895
reviews and 1,052 support requests resulting in a total of
3,319 feedback items we considered and coded in our further
analysis.

C. Classification and Problem Case Development

We used an iterative exploratory coding approach [55]
for the user feedback analysis. Since we were interested in
analysing user complaints regarding issues on the PWMs’ in-
teraction with websites we had to filter out unrelated feedback
(e. g. ”This Password Manager is very good” or ”Doesn’t work,
this sucks”) first. Therefore, three authors each reviewed a
third of the full set, marking user complaints as relevant if
they focused on the PWM’s interaction with a website (cf.
Figure 1). This first pass was also used to assign initial codes to
the complaints (Figure 2, step 1). We aimed to identify both the
broken functionality as well as the underlying technical cause.
To obtain a more diverse view, we then repeated the process
with a different third of the data set (step 2). Therefore, two
researchers reviewed each feedback item for relevancy and the
initial codes. After coding all items we regrouped and merged
our findings (step 3), resulting in 150 relevant user complaints.
Since all researchers discussed and agreed on the final codes,
we did not calculate the inter-rater reliability [54]. Using the
merged initial codes, we iteratively developed themes covering
issues and areas suitable for the later problem cases. This
resulted in a final code book consisting of 59 codes divided
into a end-user oriented and a more technical perspective
(step 4). We first evaluated the final code book by coding
20% of the items together, before splitting the remaining
80% between three researchers to reassess the entire data
set with (step 5). Using the coded data set, we were able
to identify complaints that described the same problem even
across multiple PWMs. Based on this, we developed the final

interactions, which describe technical problems of one or more
PWMs with common practices in web development (step 6). In
this step, we also decided to filter out 40 reviews we previously
considered relevant because they either contained not enough
details to be reproducible. While these fit our criteria for
relevancy and coding, they where unfit for the MWEs we
attempted to build. Finally, three researchers discussed the
resulting valid interactions and categories, reviewing and refin-
ing the description for each interaction (step 7). In this step,
we used the technical codes of the code book to categorize
the interactions and the end user oriented side to determine
fulfillment criteria, e. g. the requirements a PWM has to pass in
order to obtain a positive rating for the respective interaction.
We also reviewed the feedback items our further analysis is
based on to refine these fulfillment criteria. See Table V-C for
the final list of interactions and their descriptions.

D. Limitations

Due to the qualitative nature of our user feedback analysis,
this work is not without limitations. First, we only review
PWMs that are available as web browser extensions. However,
since Chrome has by far the largest market share over all
browsers, and most extensions can also be used on e. g.
Firefox, we are confident that our selection covers most if not
all relevant PWMs. We can only provide limited insight into
closed source PWMs and possible causes for their behavior as
these are not available publicly. In these cases, we could only
review Chrome Web Store reviews and support requests.

While we are confident that we reached saturation during
our analysis, we only reviewed a limited number of user
feedback sources. Depending on the PWMs popularity and
whether or not they provide third party feedback collection
e. g. through a ticket system, the number and age of re-
views feedback items varies per PWMs. Popular extensions
sometimes provided thousands of reviews for which we only
sighted the first 100 with all comments, while less widespread
ones only had few comments that could span until November
2013. Furthermore, reviews are related to multiple extension
versions. We did not review any new versions or feedback
items after July 2020, since after that time frame we started
coding. Additionally, reviews are subject to a self-reporting
bias and the sample of users who report issues is much smaller
than the number of downloads and therefore possibly not
representative to the user base at large. As described in Section
IV-E, we found several issues that were only rarely reported.
However, since we aimed for issue diversity, we argue that
for the purpose of this work, knowing that an issue exists is
sufficient. If a problem description only occurs seldom or if
it is related to an outdated extension version, it might still be
relevant for other PWMs. Overall, we based all examples of
interaction problems between PWMs and websites on our data
for issues, reviews and support requests and tested all examples
with all 30 PWMs in our list. Finally, our approach is not
suitable to investigate the prevalence of these issues, as they
are dependent on e. g. users that report them, the popularity of

the PWM and potentially private issue trackers we could not
access.

E. Interaction Problems

In the following, we present and discuss our findings in
alphabetical order, highlighting their relevance and describing
the set of interactions they are composed of.

Additional Elements (Auth). When a website contains more
input fields than necessary for the current authentication task,
even if they were declared correctly and explicitly, PWMs
can struggle locating relevant input fields. Examples for this
include websites with username and password fields for both
account creation and login, or cases in which multiple single-
digit fields instead of only one input field are used for e. g.
TOTP codes, in which users complained about not being able
to auto-fill this additional information:

“Great application and extension. Pity it can’t detect
more than 2 fields on a screen. In case (such as
banks etc.) you need to enter 3 different strings
for identification, the app / extension will grab and
use only 2, while you’ll have to add the 3rd one
manually. [...]” (AA-04, User 1)

Overall, this category requires the additional input fields to
be related to the authentication process in some way. In these
four cases, the desired authentication process fails.

Additional Elements (Non-Auth). While similar to the pre-
vious category, this focuses on input fields that are not related
to authentication purposes. This includes unrelated text fields
on e. g. CMS that are incorrectly filled with credentials as
well as other types of elements such as drop-downs and check
boxes. Here, undesired behavior might expose passwords in
plain text or even break websites. We identified four cases
where additional elements were problematic.

Domain Matching. Before a PWM can perform any detection
or interaction on the website, it has to compare the given URL
to all stored credentials and their associated service URLs.
This is a necessary step to recognize and autofill known cre-
dentials as otherwise, authentication-related information might
be leaked to unrelated or untrustworthy services. Overall, we
identified seven sources of service mismatching. For example,
we identified cases where services were not recognized due to
e. g. no or wrong differentiation between subdomains or paths
on a website, or because the website incorporates redirects or
iframes with different origins, all of which complicates the
service matching process.

Input Fields. After identifying the website, a PWM needs
to locate all input fields that are relevant for the current au-
thentication task. This usually comprises fields for an identifier
such as a username and a password, but can also require further
personal information or TOTP codes. To find all relevant fields,
PWMs usually rely on their declaration, using attributes such
as name, type or id to decide whether or not an input field
should be filled. In this category, we collect nine interactions
where the detection is difficult, e. g. because not all or no

relevant attributes are present, or because the attributes used
ambiguous or misleading values such as “IDToken1” for
username inputs. This was a problem we found frequently
within user reviews:

“[...] Some websites don’t define a type attribute for
their inputs, while LastPass seems to blindly trust
any input element to have a defined type. I think
maybe the best solution is to assume that if a type
is not set, that the type is then “text”” (I-07, User 1)

Non-Standard Forms. This category includes five in which
the form element containing the relevant input field diverged
from standards by e. g. omitting a form tag or locating submit
buttons in website elements different from the associated form.

JavaScript. We found six problem cases related to scripts on
the website that in some way manipulate form elements or
user input, as was e. g. described in the following issue:

“[...] I guess this is because citi.com actually dis-
plays 5 different password fields before the password
field used by the user. While they’re not specificly
hidden and just moved out of the viewport, I imagine
it to be kind of tricky to add detection for something
like this.” (J-05, User 3)

This category also includes cases in which relevant input
fields are shown one after another, are hidden until the user
interacts with other website elements or when pseudo security
measures are in place to disrupt automated inputs by e. g.
enforcing a keypress event before enabling submit buttons.
In all of these cases, JavaScript impedes the work of PWMs,
therefore reducing their usability.

Timing. We collected two interactions in which some kind of
delay disrupts the PWM workflow. Such problems can occur
when scripts on the website cause relevant elements to appear
after the initial scan for input fields, or when a PWM generates
TOTP codes only once - here, the code can be outdated if there
is a delay before submitting the credentials, causing the login
to fail.

Web Standards. Finally, we identified two in which PWMs
struggle to correctly work with HTTP Basic Authentifica-
tion [44]. This falls outside of the realm of our previous
categories since it does not require extensions to interact
with the website, but simply implements a callback to the
onAuthRequired event [6], [31]. Issues with HTTP Basic
Authentication were noteworthy as they were reported multiple
times. For example, ten different users showed frustration and
complained about the lacking support for basic authentication.

Further Findings. The reported issues in our coding impli-
cate vastly different approaches to automatic storage, filling
or full on logging in on websites. These approaches included
automatically filling the page when accessing a website, but
also the possibility to choose an account when clicking on
the input field or having to interact with buttons provided on
the browser user interface, not including any convenience. We
need to consider these different approaches when testing the
PWMs in our next study in order to discover how each of

them performs on the different categories of MWEs we test.
This way we hope to discover recommendable approaches
that solve some of the issues fully automatic PWMs have
compared to the ones that require more user interaction.
Finally, while we think the interactions we discovered reach
saturation concerning the interactions users report, some of
them were found for only one or two PWMs, which inhibits
reliably reports on their prevalence and how other PWMs
might solve them. In a follow-up study described in section V,
we test common PWM approaches for these interactions to
both obtain a picture of problem frequency and to investigate
how different PWMs try to solve them. We further discuss how
problematic interactions could be mitigated in the future.

V. INTERACTION PROBLEM EVALUATION

In the second study, we investigate the interactions between
15 PWM browser extensions with previously identified 39 in-
teractions. Since the user feedback we analyzed in Section IV
was specific for single PWMs, we aim to investigate how other
PWMs deal with the problems we found and provide recom-
mendations to help future PWM and website development. We
will detail our methodology and considerations below and then
present and discuss the results.

A. Methodology

To test the 15 PWMs, we implemented all problem cases we
found in the form of 39 minimal working samples (MWEs).
With this, the problems can be presented easily and it is further
possible to remove e. g. dependencies as external causes. We
therefore chose this form to build working examples from our
list of interactions, using a flask web application that simulated
logins in different scenarios [11]. In total, we conducted 585
distinct tests. The application spans three domains and two
subdomains (D01-D04), using the third domain to simulate the
HTTP protocol interaction (D-04). This was necessary as our
other domains use HSTS, which prevents an accidental proto-
col changes on other interactions (D01-D03). We implemented
the MWEs as basic websites, consisting of minimal styling
for readability, the JavaScript and HTML elements required
to reconstruct the interaction and in most cases some basic
form of validation checking that allows us to verify correct
username and password input by the PWM. They all work
on a template, for which we included an example in Figure 3
and each page includes a description of the interaction and
instructions on the requirements to pass the interaction. We
provide the web applications as part of our replication package
in subsection V-D.

Evaluating PWM Interactions. For this analysis, we limited
ourselves to the top ten PWMs, mainly because these cover
97.9% of users according to download counts. We added
KeePassXC and Passbolt since their open source nature allows
for investigation of interactions, bringing our total coverage
up to 98.4%. We further added the default browser PWMs
for Chrome, Firefox and Edge, since due to their immense
user base, their PWMs likely have a larger count of users
than any of the top ten PWMs mentioned previously. Other

Fig. 3. Our minimal working examples (MWEs). Consist of the interaction
that we modeled, a short description and instructions on what is considered
a successful interaction. Layout aspect ratio adapted for paper.

browsers, such as Safari, were not reviewed due to a smaller
marketshare at the time our tests took place. Overall, we tested
15 PWMs. For all of them we used the premium trial version
where available.

We test all PWMs against all 39 problems and distinguish
the following test outcomes:
• Seamless: The PWM behaves as expected without any

manual interaction (e. g. it intuitively autosaves and au-
tocompletes). Expected behavior is defined per minimal
working example on the page.

• Manual: The PWM does not behave as expected, but
manual intervention or workarounds lead to the expected
result. This includes e. g. using context menus to fill
credentials or settings that make the case possible.

• No Solution Found: The PWM is not able to solve the
task without additional interaction. Manual interaction
with the website or searches on e. g. the respective support
pages lead to no solution, which suggests that the case is
not supported or malfunctioning.

• Not Applicable: The PWM does not support a required
feature such as autosave or multi-factor authentication. It
cannot be evaluated for these cases.

Each MWE includes a description how to proceed with the
example and which conditions define success or failure. The
researchers who tested the PWMs were instructed to follow
these descriptions using the interaction model of the respective
PWM. If a feature such as autosave was not available or work-
ing, we tried to find a solution by using a simple Google query
including the name of the PWM, the term “password manager”
and the feature in question to find existing settings that resolve
the issue. After a first pilot run in which we tested each PWM
with all MWEs, we fixed remaining bugs and obtained an
overview over the different approaches PWMs deploy in order
to finalize our rating. We included these considerations for the
ratings in order to prevent unfair treatment of more manual
approaches like having to click an input field to trigger the
PWM. We also used this pilot to clear up any confusion about
interaction descriptions and conditions between the authors.

TABLE II
PASSWORD MANAGER APPROACHES TO IMPLEMENT AUTOSAVE, AUTOFILL

AND AUTOLOGIN.

Password Manager Autosave Autofill Autologin

Lastpass Ask On Load Setting
Norton Setting Manual None
Avira Ask On Load None
Dashlane Ask On Load Seamless
1Password X Manual Manual None
Bitwarden Ask Manual None
RoboForm Ask Manual Seamless
Keeper Ask Ask Seamless
Blur Setting On Load None
Enpass Ask Manual Seamless
KeePassXC Ask Manual Setting
Passbolt None Manual None
Chrome Ask On Load None
Firefox Ask On Load None
Edge Ask On Load None

Password Manager Approaches. PWMs differ vastly in the
approaches they use to implement autosave, autofill and au-
tologin features. While the terms suggest automatic behavior,
they often require manual intervention. An overview of the
strategies encountered during the PWM tests is given in
Table II. The approaches described for each PWM were used
as a baseline to assign codes to each MWE. If a PWM did not
support feature e. g. TOTP, we used the code “Not Applicable”
in contrast to “No Solution Found” for PWMs that supported
the feature, although it was not available or working in both
cases. We did however count it as “No Solution Found” when
PWMs did not support common approaches like HTTP Basic
Authentication (W01 & W02) or simple input field uses like
pin entry (AA-01).

As can be seen in Table II, PWMs usually autosave cre-
dentials by asking after a login was submitted. In a few
cases such as Norton, 1Password or Blur, this feature can be
triggered manually or enabled in the settings. Only Passbolt
does not offer an autosave feature. For autofill, about half of
our tested PWMs filled the stored credentials automatically
as soon as the login page is loaded, while the others require
manual intervention such as using a context menu or clicking
an icon within the input fields. Only Keeper uses an approach
in between by automatically asking if credentials should be
autofilled, but still requiring the user to manually agree.
Finally, we found that as few as four out of our 15 PWMs
support an autologin feature. Although two others, LastPass
and KeePassXC, allow to control autologin in their settings,
the remaining nine PWMs do not offer the feature at all.

Study Protocol. Following the study protocol, two authors
reviewed all PWMs they did not review during the piloting. For
each test, we re-installed the extensions and started the PWMs
with fresh user profiles, to ensure a clean testing environment.
We went through the entire set of MWEs, followed the
instructions given on each test case page and based our rating
on the conditions we set for a seamless interaction. After
rating all managers this way, the two involved authors merged

the results together with the third author who conducted the
piloting for that PWM. We used this very elaborate approach in
order to capture as many workarounds and additional settings
as possible, detect inconsistent behavior and prevent unfair
ratings. Since some of the problematic interactions we examine
can be considered edge cases, we refrain from ranking the
tested PWMs or apply similarly subjective measures and com-
parisons. This is especially important as we do not consider
the actual real world frequency of the issues found in our set
of interactions.

B. Limitations

Our analysis was conducted between 11/13/2020 and
11/18/2020 with at that time most recent versions for each
PWM. As PWMs might have been updated after our analysis,
more recent versions could behave differently due to added
or modified support for features or known issues. Similar,
user feedback for more recent versions of a PWM might raise
new issues we did not include in our analysis. We used four
different labels to distinguish how well a PWM was able
to deal with the different interactions. Although all authors
discussed the fulfillment criteria for each interaction together,
the individual ratings might be subjective and can depend on
the respective settings and overall setup. However, since we
tested all PWMs with three authors, we are confident to have
correctly estimated the capabilities of each. We further argue
that if a setting was available, but hard to find and not regarded
in our evaluation, this decrease in usability can also lead to a
rating such as ’No solution found’. Additionally, some settings
might depend on settings only available in e. g. beta builds of
a PWM which were not used in our analysis. Furthermore,
PWMs might include manual or hardcoded workarounds for
certain websites, which would not necessarily trigger in our
MWEs and lead us to mark the respective interaction as failed.
While we base all interactions on real user feedback and our
implementations follow examples given in reviews, support
requests and GitHub issues, we cannot guarantee that all
examples are reflective of common real world issues. However,
all problems depicted in our MWEs are valid problems that
represent obstacles PWMs face. In many cases, we prioritized
having more different interactions to increase problem diver-
sity over testing multiple variants of the same issue. Since
PWMs use a variety of approaches to implement different
features such as autofill or autosave, this might have led to
our evaluation favoring certain PWMs.

C. Results

The results of our evaluation are summarized in table V-C.
In the following, we will describe interesting findings and
interactions per category.

Additional Elements (Authentication Related). In this cat-
egory, our MWEs were largely unsupported. AA-01 (pin field
required for authentication) proved to be especially difficult,
with only two PWMs receiving conditional ratings at best.
This is likely due the five input fields included, that are

combined to an array and therefore use the same name-
attribute. The example further contains no field with the type
password, which might disturb PWM field detection. Only
AA-03 (login page contains both login and registration forms),
received seven (46%) seamless PWM ratings. Three other
cases, including tests for additional required authentication
fields (e. g. for pin codes or last names), received up to three
seamless, requiring workarounds or outright failing with most
PWMs. This is due to poor or missing support for additional
or custom authentication fields. Most PWMs did not offer to
store information other than a username and a password.

Additional Elements (Not Authentication Related). This
category contains cases with website elements that are not
directly part of the authentication process such as radio but-
tons or checkboxes (e. g. Remember Login buttons), but also
unrelated form elements (e. g. setting panels). In interaction
AN-01 (admin panel with multiple user authentication fields),
seven (46%) PWMs got a seamless rating, successfully filling
admin credentials while leaving out credential fields for other
users. Another problematic interaction was AN-02, which
contained a Remember Me checkbox and a panel consisting of
multiple radio buttons representing choices that a PWM should
remember. Only one PWM provided a seamless experience
by directly storing the choices with the credentials, therefore
demonstrating an exemplary solution to this autosave problem,
while two being able to store custom fields on manual interac-
tion. Interaction AN-03 (multiple input elements outside of the
login form) includes scripts that report when a PWM interacts
with more than the necessary input fields by checking if events
on the other elements are triggered. Here, ten PWMs (66%)
correctly avoided field interactions. This case only concerned
PWMs that scan and potentially test (e. g. click or send a
keyboard event) all page input fields. Surprisingly, all default
browser PWMs failed this test, interacting with each input field
while submitting the form. Finally, we reconstructed upload
fields that some users reported to be obstructed by the PWM
extension in AN-04. However, we found them to work with
all PWMs, representing one of two interactions that received
only seamless rating.

Domain Matching. This category covered some of the most
commonly reported issues such as account usage across mul-
tiple subdomains (D-01) or multiple redirects after login,
obstructing autosave functionalities (D-05). Both performed
noticeably better than others, with nine (60%, D-01) and
ten (66%, D-05) seamless interactions. This implies that
these are common issues which are likely solved by defaults
similar to the same-origin policy [19], [23], [24]. Another
interesting interaction is D-02 (account management across
multiple different second-level or top-level domains), inspired
by an issue with e. g. ShareLaTeX’s move to Overleaf [9], or
domain moves and multi-service domains like discord.gg and
discord.com. In all of these cases, multiple different domains
point towards the same service. D-02 was not seamlessly
handled by any PWM, likely because there is no reliable
way to automatically detect if a service or an authentication

TABLE III
RESULTS FOR OUR EVALUATION TESTING PASSWORD MANAGERS AGAINST THE PREVIOUSLY GENERATED MINIMAL WORKING EXAMPLES.

Interaction Legend:
Seamless , Manual , No Solution Found , Not Applicable

Color scheme optimized for color blindness and b/w printouts.

Password Manager

#(
Se

am
le

ss
)

L
as

tP
as

s
N

or
to

n
A

vi
ra

D
as

hl
an

e
1P

as
sw

or
d

X
B

itw
ar

de
n

R
ob

oF
or

m
K

ee
pe

r
B

lu
r

E
np

as
s

K
ee

pa
ss

X
C

Pa
ss

bo
lt

C
hr

om
e

PW
M

Fi
re

fo
x

PW
M

E
dg

e
PW

M

Nr Description

Additional Elements (Auth)
AA-01 Multiple input fields for single input, e.g. 5 input fields for a 5-letter PIN 0
AA-02 Multiple login buttons (e.g. user & password fields, Google signin, SSO) 2
AA-03 Site includes more authentication-related forms than necessary (e.g. login & registration) 7
AA-04 Site includes more authentication fields than user & password (e.g. lastname) 3

Additional Elements (Non-Auth)
AN-01 Site includes an admin panel with multiple user authentication fields 7
AN-02 Site includes checkbox and radio buttons that the PWM is supposed to remember (e.g. ”Remember

Login”)
1

AN-03 Site with interactable elements such as drop-downs unrelated to authentication, but affected by the
PWM

10

AN-04 Site with form submits unrelated to authentication 15

Domain Matching
D-01 Base domain with subdomains using the same credentials 9
D-02 Multiple distinct domains (e.g. ShareLaTeX & Overleaf) using the same authentication realm 0
D-03 Base domain with subdomains using separate services 4
D-04 Login is available via both HTTP (port 80) and HTTPS (port 443) 4
D-05 Multiple redirects after login submission that obstruct auto-save 10
D-06 Login form in an iframe which loads a different website 3
D-07 Base domain with several paths or subpages with seperate services 3

Input Fields
I-01 Input field definition includes e.g. ”code” substring, can be confused with TOTP codes. 12
I-02 Input field has misleading or unusual name, e.g. ”auth” or ”IDToken1” for username fields 13
I-03 Input field has misleading or unusual type, e.g. ”password” for TOTP fields 11
I-04 autocomplete tags are used within input fields (e.g. autocomplete=username) 9
I-05 No information on type of input field (i.e. no hints in ID, name, type or other attributes) 5
I-06 Form with <textarea> for username instead of input field 3
I-07 Input field has no type attribute 7
I-08 Input field has a max-length smaller than the pre-generated password 1
I-09 Website manipulates input data to a semantical equivalent (e.g. changes email to uppercase) 10

JavaScript
J-01 Hidden password field (e.g. display:none HTML-style) 6
J-02 Submit button is only enabled after registering a keypress event 12
J-03 Multiple login steps on one page: only user field initially visible, password shows up in later step. 0
J-04 Multiple login steps over multiple pages: only user field initially visible, password shows up in

later step.
0

J-05 Site manipulates input in some way (e.g. substitutes with ****, adds whitespaces, deletes automated
inputs)

7

J-06 Site with a dummy password field that is swapped with an initially hidden real one on interaction 3

Non-Standard Forms
N-01 No form tag around the login fields that the (login-)data via Ajax 9
N-02 Form element is a custom WebComponent-Tag 15
N-03 Submit button is a div with role=button 8
N-04 Form submit button is not part of the form itself 9
N-05 Hyperlink instead of submit button that triggers JavaScript 10

Timing
T-01 Delay initializing authentication fields (pages load slowly) 9
T-02 Delay between generation of TOTP and input submission (e.g. due to users waiting too long) 0

Web Standards
W-01 HTTP basic authentication as login method 4
W-02 Multiple files behind HTTP basic authentication triggering multiple authentication requests that

might fail due to request-reply mismatches
3

realm is the same across multiple domains. PWMs commonly
solved this by letting users search accounts and displaying a
warning to make them aware of potential phishing attacks.
After confirming the warning, the credentials could be aut-
ofilled. Another interesting case is D-04 where both HTTP
and HTTPS protocols were used to access a website. We rate
the interaction as seamless if PWMs allowed to insert the
same credentials to the HTTP page, which is critical from a
security perspective. Common solutions we observed included
PWMs offering autofill with warnings and requiring additional
interaction. This seems to be a sensible compromise until
enforcing HTTPS has finally become the default solution.

Input Fields. This category covers atypical or confusing input
fields in forms. Within our tests, I-08 revealed to be the most
challenging, being our only input field example including a
type of password policy by enforcing a maximal length in the
password field. Only one PWMs handled this case seamlessly,
which we defined as limiting the filled password to the allowed
number of symbols and offering to save this as a new password
as this meant that the PWM detected the different input.
Most PWMs ignored the constraint, inserting their full-length
passwords, which might lead to rejected requests or other
problems after submitting. We did not expect this result,
because the max-length attribute is machine-readable and
therefore should help the PWMs instead of posing a difficult
interaction. This finding is in line with our results for I-04,
in which the autocomplete-attribute is used. This allows
websites to specify the expected type of input, which was
a new password in this case. The other interactions in this
category focused on different levels of noise that obstruct the
PWM. While I-01 to I-03 named input fields in unusual ways
and posed no problem to most (eleven to thirteen) of our
tested PWMs, interactions I-05 to I-07 omitted information
such as type=password or used unusual input types like
textarea. This introduced security risks such as autofilling
passwords into cleartext fields. Only between three and seven
PWMs achieved seamless interactions.

JavaScript. This category focuses on JavaScript as part of
the login process of websites. Here, J-02 is the best working
interaction, which included a submit button that was disabled
until a keypress event is registered. We found that twelve
PWMs (80%) provided a seamless interaction and two more
send a somewhat delayed event. Further interesting cases were
logins with multiple steps (J-03 & J-04), e. g. by showing
a username field and a button to continue to the password
input. Multiple widespread service providers like Google and
Microsoft utilize this authentication workflow, and while al-
most all PWMs had workarounds or very simple fixes using
page re-scans to support them, no PWM provided a seamless
experience. This meant that the PWMs with autologin features
were not able to utilize them, and the PWMs with autofill
left fields empty and required manual interaction. Overall, this
demonstrates the difficulty of these interactions, especially in
J-04, where the password field was hidden behind another
GET-request, therefore requiring an additional page load, the

PWM has no way of detecting if this form will be used
for authentication. Finally, J-05 and J-06 directly manipulate
input fields after they are filled. In J-05, inputs are replaced
with asterisks (*) while J-06 swaps a hidden real password
field with the initially visible one when it is focused. Both
mechanisms were employed as security mechanisms and were
problematic for PWMs. While J-05 achieved seven seamless
interactions as the substitution did not obstruct the PWMs,
only three PWMs detected the field replacement in J-06 and
filled the correct one.

Non-Standard Forms. We further investigated how well
PWMs are suited to work with non-standard forms, which
includes input fields or submit buttons that deviate from web
standards by e. g. using custom tags (N-02) or placing the
submit button outside of the authentication form (N-04). As
PWMs rely on certain criteria such as web standards to detect
relevant authentication input fields, they can struggle with
detection if a website deviates from widespread best practices.
Overall, we found that most tested PWMs were able to detect
malformed login forms. Within our sample, seven (46%)
PWMs were able to fulfill our requirements seamlessly. Three
received ratings of non-applicable for most interactions in this
category as they do not support autosave. The only exception
is N-02 (custom WebComponent-tag as form element), with
which every PWM was able to interact without problems.
Here, we only required autofill instead of autosave due to
our endeavor to stay close to the examples we found in the
user feedback evaluation. We argue that PWMs use similar
approaches to detect input fields, which should therefore not
affect the performance of autosave or autofill functionalities.

Timing. This category dealt with two test cases in which some
sort of delay can obstruct PWMs as relevant information is not
(yet) available. Between both cases, support differed vastly:
While nine (60%) of the tested PWMs had no problem with
T-01 (input fields appear after a few seconds), none were able
to succeed in T-02 (invalid TOTP code due to delay before
submission) without any additional user intervention. For T-01,
we observe three PWMs that were unable to fill the input fields
without manual interaction or a re-scan of the website. Two
PWMs require the user to e. g. click on the icon of the PWM,
which triggers the autofill. We suspect that the PWMs without
solution only scan the page once as soon as it is available, and
therefore miss fields that become accessible at a later time.
Interaction T-02 expects the PWMs to fill a TOTP code besides
username and password. This does not only require them to
be able to store and generate TOTPs, but to also be able to fill
and update them if they turn invalid. We found that most (nine,
60%) tested PWMs do not support TOTP in general, rendering
us unable to test this MWE with them. For the remaining
PWMs, none were able to update the code while four PWMs
can generate and autofill the currently valid TOTP. Finally, two
only generate a TOTP and require users to copy and paste it.
We consider these to be unable to succeed in this case.

Web Standards. Finally, we included two Web Standard
MWEs that both included HTTP Basic Authentication. [44].

Here, almost all PWMs behaved in the same way in both
MWEs, with the exception of Chrome, where W-01 (HTTP
Basic Authentication as login method) worked flawlessly,
while autosaving credentials in W-02 (multiple files on the
website are secured with HTTP Basic Authentication, resulting
in multiple authentication requests) required explicit user
approval and reloading the website. Although HTTP Basic
Authentication is one of the oldest and most basic login
mechanisms, most PWMs (ten, 66%) struggle with detecting
its pop-ups as login input fields, with only one of them warning
the user that autofill is not possible and that they should copy
and paste their credentials manually. Within the remaining
PWMs, four are able to detect and fill the form, while one
offers a setting to activate basic authentication support.

D. Replication Package
To support the replication of our work, we make the

following item available as part of our replication package: We
include the set of collected GitHub issues (cf. IV-B), Chrome
Web Store user reviews and support requests (cf. IV-B) as well
as the code book created as a result of our coding process
(cf. IV-C Step 4) and the resulting analysis results (cf. Table
V-C).3 The implementation of our MWEs is included as a
web application, supported by sample videos of screen casts
documenting our analysis process and the set of extension
packages used during our analysis.

VI. DISCUSSION

In this section, we discuss our findings and develop recom-
mendations to help PWMs and websites to improve authenti-
cation experience, as well as pointing existing shortcomings.

A. User complaints
To address RQ1: Which interaction patterns on the web

are problematic for PWMs? we decided to investigate user
feedback, in order to collect feedback for real-world deploy-
ments in uncontrolled environments. We reviewed the related
websites and interactions, sorted them into categories and
used these findings to develop MWEs that reflected interaction
problems. During this process, we found that almost no user
feedback covered the password generation. This is surprising
because from a security perspective, this is one of the main
advantages of PWMs, and the few interactions we found
concerning this feature (like I-08: max-length attribute for a
password field) indicate that it should be a common issue
across PWMs. We reason that we found only very little user
feedback for this feature because users expect this to be the
website’s fault or might not be using the feature. This could
hint at an awareness problem concerning the security benefits
and possibilities of PWMs. The number of failures means that
password generation itself is problematic. The low amount
of user feedback we found for this large field of password
rules indicates that perhaps there are other problematic issues
that users are unlikely to report (at least to our chosen PWM
feedback sources).

3The replication package is provided at https://publications.teamusec.de/
passwordManagers

B. PWM Evaluation

To investigate RQ2: How do PWM browser extensions
handle these interactions? we collected the interactions of
15 PWMs with the MWEs we developed previously. Here,
we found numerous interaction problems, pointing us towards
the most problematic areas for PWMs that we need to work
on. In summary, only two interactions were seamless for all
tested password managers: N-02 (the custom web component
tag) and AN-04 (form not at all related to authentication),
both found on PWMs with less than 10,000 downloads,
likely indicating ”non-issues” that should simply be fixed by
the PWMs they were reported for. On the other hand five
interactions where not solved seamlessly by any PWM we
tested, indicating a gap in possible approaches to solve the
problems represented by these MWEs. For these and any
other difficult or important case, we would like to formulate
recommendations in the following section.

C. Recommendations

This sections aims to use our findings in the previous
studies in order to answer RQ3: What can be done to
improve the interaction between PWMs and websites? We
discuss potential improvements for the interaction problems
we found and discuss their feasibility. While we try to focus
on improvements that are possible on the web right now,
we found a few gaps that need to be filled by the major
web standards before websites or PWMs can address them.
We highlight these responsible actors at the heading of the
following recommendation paragraphs.

Support for Using Credentials in Multiple Environments
(Webstandards). One strong pointer here is found in inter-
actions D-01 to D-04 and D-07: a service that spans or does
not span across multiple domains, paths and protocols. The
underlying problem is most likely the lack of standardization:
Since there is no best practice for PWMs how to match
different origins or how to detect whether or not different
URLs serve the same service and should therefore be pro-
vided with the same credentials, and since posting username
and password combinations to the wrong website poses a
critical security risk, PWM have adopted different default
strategies that mostly lead to non-recognition of URLs that
deviate from the stored websites. Additionally, some of these
cases require opposing behaviors: Fulfilling all interactions
seamlessly would require PWMs to identify e. g. subdomains
as both the same or different services that they should or
should not match at the same time. Upon investigating how
open source PWMs solve these interactions we found a list
of equivalent websites within the repository of one of the
open source [5]. This indicates a gap within standards, since
websites likely also want to indicate this kind of behavior to
any authentication mechanism. To solve this, a website could
use a process similar to the Cross Origin Resource Sharing
header, perhaps in combination with the content security
policy. Currently no fitting standards exists however, so this
would need further investigation and discussion In the case

https://publications.teamusec.de/passwordManagers
https://publications.teamusec.de/passwordManagers

of D-04 (protocol switch from HTTP to HTPSc) a seamless
interaction represents a security risk, which means that this
rating is undesirable. However, this case represents a usability
and security trade-off, as the conditional interactions we found
mostly rely on warnings, which in the past have proven to be
an ineffective security measure on their own [33]. Furthermore,
HTTPS is likely to become a web default [43], [45]. Websites
will need to comply or become effectively inaccessible, which
in principle solves this problem. Furthermore, hard coding
information that could change in the future, such as domains,
can lead to security issues later on, as domain owner changes
are possible.

Better Support for Multipage Login (Websites). Other
examples for predefined data include rules to improve support
for logins that span multiple pages as tested in J-03 & J-04. For
popular services like Google, we found that they rely on lists
of predefined sites in PWMs that require special treatment. We
found a list of websites with username-only logins within the
repository of one of the open source PWMs [70]. Similar to
hard coded domains, this information can change if a website
changes its authentication mechanism which can cause the
respective PWM to malfunction. Websites could potentially
use the autocomplete-attribute [18] to indicate the need
to fill username on one page and password for the account on
the other, but this needs widespread adoption to prevent the
need for hard coded lists.

Support for Custom Fields (PWMs, Websites). We further
were able to observe a lack of support for custom fields within
login forms. Many of the PWMs we tested were unable to
detect, store or autofill them, while several others could only
do so after manual interaction. This also often required a te-
dious search for the correct required settings within the PWM,
which we deem to be an usability shortcoming. We argue
that while it might not always be possible to automatically
detect all relevant custom fields, PWMs should offer an easily
accessible way to store additional data for all credentials. Fur-
thermore, the HTML autocomplete-attribute [18] already
offers a standardized way to pre-define identity-related content
types that an input field expects. While we cannot judge the
prevalence of this attribute on websites, we suggest this as
a solution that website managers can adopt to help PWMs
correctly detect and autofill additional information.

Avoid Obscure JavaScript (Websites). Another striking find-
ing in our evaluation of user feedback was the frequent
mentions of websites that showed some kind of odd behavior,
obstructing the PWM. In these cases, the websites made use
of JavaScript to implement e. g. security measures, which are
mostly meant as security measures to avoid automatic inter-
action with the website. This includes websites that substitute
the password with asterisks after submission, delete automated
input, or use a hidden input field for passwords that only
appears if the dummy field is focused. Features like this are
aimed at increasing security and were mostly found on e. g.
banking websites, however, we argue that while there is a
fitting threat model, this type of attack is very unlikely and

does not justify the decreased usability by essentially blocking
PWMs. We further found that some PWMs, especially those
build into common browsers, use JavaScript to interact with
website elements. While this is usually done to detect all
possibly relevant input fields on a page, we also found PWMs
who manipulate the website after credentials were entered or
after submitting a login. Manipulating websites in this way can
cause the website to malfunction, as it might trigger events
linked to the respective website elements and is further not
necessary to detect input fields.

Support for HTTP Basic Authentication (Password
Managers). While basic authentication is not frequently used
anymore, we argue that as a web authentication standard it
should be supported by PWMs. Basic authentication is not part
of the website, but a mechanism provided by the respective
browser, and as such requires different detection approaches
than those used to identify input fields. However, most current
browsers provide APIs that PWMs could use to access and
therefore support basic authentication forms [6], [31].

Better Support for TOTP (Password Managers). Finally,
we found that almost none of the PWMs we investigated
supports the automatic generation and filling of TOTP. This
can be regarded as a double-edged sword: While the adoption
of a TOTP feature increases convenience and usability of a
password manager by easing the process for users, it also
removes the multiple factors as everything is stored in one
place, rendering the PWM a single point of failure. A way
to mitigate this issue is the addition of a separate smartphone
application that is necessary to use TOTP, which is already
offered by some PWMs such as Dashlane. This could further
be used to increase security by allowing the PWM to send push
notifications with authentication requests to a user’s phone,
adding a second factor without necessarily adopting a TOTP
mechanism.

VII. CONCLUSION

This work identified several shortcomings of both modern
desktop PWMs as well as current authentication implementa-
tion on websites, which lead to interaction problems between
them. While our work provides the first systematic analysis of
interaction problems between desktop PWMs and websites,
we identified different areas for future work. Although we
collected and labelled Chrome Web Store reviews and GitHub
issues until we reached saturation, our list of interaction
problems is not exhaustive. Further work could review ad-
ditional resources such as issue trackers by browser vendors.
Furthermore, our work focuses on desktop PWMs. However,
mobile PWMs are getting more important and bring their own
opportunities and limitations. Hence, a similar analysis could
be helpful for mobile PWMs.

REFERENCES

[1] 1password x – password manager. https://1password.com. Last visited:
11/23/2020.

[2] Angular forms and password managers - stack overflow.
https://stackoverflow.com/questions/53911864/angular-forms-and-
password-managers/53956890#53956890. Last visited: 12/01/2020.

https://1password.com
https://stackoverflow.com/questions/53911864/angular-forms-and-password-managers/53956890#53956890
https://stackoverflow.com/questions/53911864/angular-forms-and-password-managers/53956890#53956890

[3] Apple password autofill. https://developer.apple.com/documentation/
security/password autofill. Last visited: 12/03/2020.

[4] Autofill framework — android developers. https:
//developer.android.com/guide/topics/text/autofill. Last visited:
12/03/2020.

[5] Bitwarden: Added discord to global equivalent domain
#752. https://github.com/bitwarden/server/pull/752/commits/
c4164f5703babc5d11d8cf1e8426c442b4969573. Last visited:
12/04/2020.

[6] chrome.webrequest - google chrome. https://developer.chrome.com/
extensions/webRequest#event-onAuthRequired. Last visited:
12/03/2020.

[7] Content security policy level 3. https://www.w3.org/TR/CSP3/. Last
visited: 12/03/2020.

[8] Dashlane - password manager. https://www.dashlane.com. Last visited:
12/03/2020.

[9] Exciting news — sharelatex is joining overleaf - overleaf, online latex
editor. https://www.overleaf.com/blog/518-exciting-news-sharelatex-is-
joining-overleaf. Last visited: 12/03/2020.

[10] Fetch standard - 3.2. cors protocol. https://fetch.spec.whatwg.org/#http-
cors-protocol. Last visited: 12/03/2020.

[11] Flask. https://palletsprojects.com/p/flask/. Last visited: 12/03/2020.
[12] Github - bitwarden/browser: The browser extension vault (chrome, fire-

fox, opera, edge, safari, & more). https://github.com/bitwarden/browser.
Last visited: 12/03/2020.

[13] Github - keepassxreboot/keepassxc-browser: Keepassxc browser ex-
tension. https://github.com/keepassxreboot/keepassxc-browser/. Last
visited: 12/03/2020.

[14] Github - keepassxreboot/keepassxc: Keepassxc is a cross-platform
community-driven port of the windows application “keepass password
safe”. https://github.com/keepassxreboot/keepassxc/. Last visited:
12/03/2020.

[15] Github - passbolt/passbolt browser extension: Passbolt browser exten-
sions (firefox & chrome). https://github.com/passbolt/passbolt browser
extension/. Last visited: 12/03/2020.

[16] GitHub main page. https://github.com/. Last visited: 12/03/2020.
[17] How is a two-step login better than single-step when you have a

password manager? https://ux.stackexchange.com/questions/124021/
how-is-a-two-step-login-better-than-single-step-when-you-have-a-
password-manager. Last visited: 12/01/2020.

[18] Html 5.2: 4.10. forms. https://www.w3.org/TR/html52/sec-
forms.html#autofilling-form-controls-the-autocomplete-attribute.
Last visited: 12/03/2020.

[19] Html standard - 7.5 origin. https://html.spec.whatwg.org/#origin. Last
visited: 12/03/2020.

[20] Lastpass: Free password manager. https://www.lastpass.com/. Last
visited: 11/23/2020.

[21] Netmarketshare: Browser market share. https://netmarketshare.com/
browser-market-share.aspx. Last visited: 12/03/2020.

[22] Norton password manager. https://norton.com/feature/password-
manager. Last visited: 12/03/2020.

[23] Same origin policy - web security. https://developer.mozilla.org/en-US/
docs/Web/Security/Same-origin policy. Last visited: 12/03/2020.

[24] Same-origin policy - web security — mdn. https://www.w3.org/
Security/wiki/Same Origin Policy. Last visited: 12/03/2020.

[25] Selenium with python — selenium python bindings 2 documentation.
https://selenium-python.readthedocs.io/. Last visited: 12/03/2020.

[26] Seleniumhq browser automation. https://www.selenium.dev/. Last
visited: 12/03/2020.

[27] Stackoverflow: How to create a minimal, reproducible example. https:
//stackoverflow.com/help/minimal-reproducible-example. Last visited:
12/03/2020.

[28] Statcounter: Browser market share. https://gs.statcounter.com/browser-
market-share#monthly-202010-202010-bar. Last visited: 12/03/2020.

[29] Web scraper - free web scraping. https://chrome.google.com/webstore/
detail/web-scraper-free-web-scra/jnhgnonknehpejjnehehllkliplmbmhn.
Last visited: 12/03/2020.

[30] Web scraper - the #1 web scraping extension. https://webscraper.io/.
Last visited: 12/03/2020.

[31] webrequest.onauthrequired - mozilla — mdn. https:
//developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/
API/webRequest/onAuthRequired. Last visited: 12/03/2020.

[32] Wikimedia foundation: User agent breakdowns. https:
//analytics.wikimedia.org/dashboards/browsers/#all-sites-by-browser.
Last visited: 12/03/2020.

[33] D. Akhawe and A. P. Felt. Alice in Warningland: A Large-Scale Field
Study of Browser Security Warning Effectiveness. In Proc. 22nd Usenix
Security Symposium (SEC’13). USENIX Association, 2013.

[34] I. Becker, S. Parkin, and M. A. Sasse. The rewards and costs of stronger
passwords in a university: linking password lifetime to strength. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), pages 239–
253, 2018.

[35] J. Bonneau. The science of guessing: analyzing an anonymized corpus
of 70 million passwords. In 2012 IEEE Symposium on Security and
Privacy, pages 538–552. IEEE, 2012.

[36] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano. The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes. In Proc.\ 33rd IEEE Symposium on Security
and Privacy (SP’12). IEEE, 2012.

[37] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano. The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes. In 2012 IEEE Symposium on Security and
Privacy, pages 553–567. IEEE, 2012.

[38] I. Cherapau, I. Muslukhov, N. Asanka, and K. Beznosov. On the impact
of touch ID on iphone passcodes. In Eleventh Symposium On Usable
Privacy and Security (SOUPS 2015), pages 257–276, Ottawa, July 2015.
USENIX Association.

[39] S. Chiasson, P. C. van Oorschot, and R. Biddle. A usability study and
critique of two password managers. In USENIX Security Symposium,
volume 15, pages 1–16, 2006.

[40] J. Colnago, S. Devlin, M. Oates, C. Swoopes, L. Bauer, L. Cranor, and
N. Christin. “it’s not actually that horrible” exploring adoption of two-
factor authentication at a university. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, pages 1–11, 2018.

[41] J. S. Conners and D. Zappala. Let’s authenticate: Automated crypto-
graphic authentication for the web with simple account recovery. Who
Are You, 2019.

[42] H. de Vries. Making password managers play ball with your login
form. https://hiddedevries.nl/en/blog/2018-01-13-making-password-
managers-play-ball-with-your-login-form. Last visited: 12/01/2020.

[43] Evolving Chrome’s security indicators, May 2017. visited.
[44] R. T. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1):

Authentication. RFC 7235, June 2014.
[45] Firefox 83 introduces HTTPS-Only Mode , Nov. 2020. visited.
[46] M. Golla, M. Wei, J. Hainline, L. Filipe, M. Dürmuth, E. Redmiles,

and B. Ur. ” what was that site doing with my facebook password?”
designing password-reuse notifications. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
1549–1566, 2018.

[47] J. Gray, V. N. Franqueira, and Y. Yu. Forensically-sound analysis of
security risks of using local password managers. In 2016 IEEE 24th
International Requirements Engineering Conference Workshops (REW),
pages 114–121. IEEE, 2016.

[48] M. Harbach, S. Fahl, and M. Smith. Who’s Afraid of Which Bad Wolf?
A Survey of IT Security Risk Awareness. In Proc. 27th Computer
Security Foundations Symposium (CSF’14). IEEE, 2014.

[49] A. Karole, N. Saxena, and N. Christin. A comparative usability evalu-
ation of traditional password managers. In International Conference on
Information Security and Cryptology, pages 233–251. Springer, 2010.

[50] Z. Li, W. He, D. Akhawe, and D. Song. The emperor’s new password
manager: Security analysis of web-based password managers. In 23rd
{USENIX} Security Symposium ({USENIX} Security 14), pages 465–
479, 2014.

[51] S. G. Lyastani, M. Schilling, S. Fahl, M. Backes, and S. Bugiel. Better
managed than memorized? studying the impact of managers on password
strength and reuse. In 27th {USENIX} Security Symposium ({USENIX}
Security 18), pages 203–220, 2018.

[52] S. G. Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel.
Is fido2 the kingslayer of user authentication? a comparative usability
study of fido2 passwordless authentication. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 268–285. IEEE, 2020.

[53] R. Maclean and J. Ophoff. Determining key factors that lead to the
adoption of password managers. In 2018 International Conference on
Intelligent and Innovative Computing Applications (ICONIC), pages 1–
7. IEEE, 2018.

https://developer.apple.com/documentation/security/password_autofill
https://developer.apple.com/documentation/security/password_autofill
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/guide/topics/text/autofill
https://github.com/bitwarden/server/pull/752/commits/c4164f5703babc5d11d8cf1e8426c442b4969573
https://github.com/bitwarden/server/pull/752/commits/c4164f5703babc5d11d8cf1e8426c442b4969573
https://developer.chrome.com/extensions/webRequest#event-onAuthRequired
https://developer.chrome.com/extensions/webRequest#event-onAuthRequired
https://www.w3.org/TR/CSP3/
https://www.dashlane.com
https://www.overleaf.com/blog/518-exciting-news-sharelatex-is-joining-overleaf
https://www.overleaf.com/blog/518-exciting-news-sharelatex-is-joining-overleaf
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cors-protocol
https://palletsprojects.com/p/flask/
https://github.com/bitwarden/browser
https://github.com/keepassxreboot/keepassxc-browser/
https://github.com/keepassxreboot/keepassxc/
https://github.com/passbolt/passbolt_browser_extension/
https://github.com/passbolt/passbolt_browser_extension/
https://ux.stackexchange.com/questions/124021/how-is-a-two-step-login-better-than-single-step-when-you-have-a-password-manager
https://ux.stackexchange.com/questions/124021/how-is-a-two-step-login-better-than-single-step-when-you-have-a-password-manager
https://ux.stackexchange.com/questions/124021/how-is-a-two-step-login-better-than-single-step-when-you-have-a-password-manager
https://www.w3.org/TR/html52/sec-forms.html#autofilling-form-controls-the-autocomplete-attribute
https://www.w3.org/TR/html52/sec-forms.html#autofilling-form-controls-the-autocomplete-attribute
https://html.spec.whatwg.org/#origin
https://www.lastpass.com/
https://netmarketshare.com/browser-market-share.aspx
https://netmarketshare.com/browser-market-share.aspx
https://norton.com/feature/password-manager
https://norton.com/feature/password-manager
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://selenium-python.readthedocs.io/
https://www.selenium.dev/
https://stackoverflow.com/help/minimal-reproducible-example
https://stackoverflow.com/help/minimal-reproducible-example
https://gs.statcounter.com/browser-market-share#monthly-202010-202010-bar
https://gs.statcounter.com/browser-market-share#monthly-202010-202010-bar
https://chrome.google.com/webstore/detail/web-scraper-free-web-scra/jnhgnonknehpejjnehehllkliplmbmhn
https://chrome.google.com/webstore/detail/web-scraper-free-web-scra/jnhgnonknehpejjnehehllkliplmbmhn
https://webscraper.io/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/onAuthRequired
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/onAuthRequired
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/onAuthRequired
https://analytics.wikimedia.org/dashboards/browsers/#all-sites-by-browser
https://analytics.wikimedia.org/dashboards/browsers/#all-sites-by-browser
https://hiddedevries.nl/en/blog/2018-01-13-making-password-managers-play-ball-with-your-login-form
https://hiddedevries.nl/en/blog/2018-01-13-making-password-managers-play-ball-with-your-login-form

[54] N. McDonald, S. Schoenebeck, and A. Forte. Reliability and inter-rater
reliability in qualitative research: Norms and guidelines for cscw and
hci practice. Proceedings of the ACM on Human-Computer Interaction,
3(CSCW):1–23, 2019.

[55] J. Neale. Iterative categorization (ic): a systematic technique for
analysing qualitative data. Addiction, 111(6):1096–1106, 2016.

[56] S. Oesch and S. Ruoti. That was then, this is now: A security evaluation
of password generation, storage, and autofill in browser-based password
managers. In Proc. of USENIX Security Symp, 2020.

[57] Password Rules Validation Tool. visited.
[58] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin,

L. F. Cranor, S. Egelman, and A. Forget. Let’s go in for a closer look:
Observing passwords in their natural habitat. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pages 295–310, 2017.

[59] S. Pearman, S. A. Zhang, L. Bauer, N. Christin, and L. F. Cranor.
Why people (don’t) use password managers effectively. In Fifteenth
Symposium On Usable Privacy and Security (SOUPS 2019). USENIX
Association, Santa Clara, CA, pages 319–338, 2019.

[60] H. Ray, F. Wolf, R. Kuber, and A. J. Aviv. Why older adults (don’t)
use password managers. arXiv preprint arXiv:2010.01973, 2020.

[61] K. Reese, T. Smith, J. Dutson, J. Armknecht, J. Cameron, and K. Sea-
mons. A usability study of five two-factor authentication methods. In
Fifteenth Symposium on Usable Privacy and Security ({SOUPS} 2019),
2019.

[62] J. Reynolds, N. Samarin, J. Barnes, T. Judd, J. Mason, M. Bailey, and
S. Egelman. Empirical measurement of systemic 2fa usability. In 29th
{USENIX} Security Symposium ({USENIX} Security 20), pages 127–
143, 2020.

[63] J. Reynolds, T. Smith, K. Reese, L. Dickinson, S. Ruoti, and K. Sea-
mons. A tale of two studies: The best and worst of yubikey usability. In
2018 IEEE Symposium on Security and Privacy (SP), pages 872–888.
IEEE, 2018.

[64] D. Silver, S. Jana, D. Boneh, E. Chen, and C. Jackson. Password
managers: Attacks and defenses. In 23rd {USENIX} Security Symposium
({USENIX} Security 14), pages 449–464, 2014.

[65] F. Stajano. Pico: No more passwords! In International Workshop on
Security Protocols, pages 49–81. Springer, 2011.

[66] F. Stajano, M. Spencer, G. Jenkinson, and Q. Stafford-Fraser. Password-
manager friendly (pmf): Semantic annotations to improve the effective-
ness of password managers. In International Conference on Passwords,
pages 61–73. Springer, 2014.

[67] E. Stobert and R. Biddle. Expert password management. In International
Conference on Passwords, pages 3–20. Springer, 2015.

[68] B. Stock and M. Johns. Protecting users against xss-based password
manager abuse. In Proceedings of the 9th ACM symposium on Informa-
tion, computer and communications security, pages 183–194, 2014.

[69] J. Tan, L. Bauer, N. Christin, and L. F. Cranor. Practical recommenda-
tions for stronger, more usable passwords combining minimum-strength,
minimum-length, and blocklist requirements. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
pages 1407–1426, 2020.

[70] K. Team. Add fidelity.com to Predefined Sites - KeepassXC Github
Repository, 11 2020. https://github.com/keepassxreboot/keepassxc-
browser/blob/develop/keepassxc-browser/common/sites.js (visited on
03/12/20, commit 7ee83ede26fb974d6366a64e6ef15e703eb6166d).

[71] B. Ur, F. Noma, J. Bees, S. M. Segreti, R. Shay, L. Bauer, N. Christin,
and L. F. Cranor. “i added ‘!’at the end to make it secure”: Observing
password creation in the lab. In Symposium on Usable Privacy and
Security (SOUPS), 2015.

[72] K. C. Wang and M. K. Reiter. How to end password reuse on the web.
In 26th Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27, 2019. The
Internet Society, 2019.

[73] R. Wash, E. Rader, R. Berman, and Z. Wellmer. Understanding password
choices: How frequently entered passwords are re-used across websites.
In Twelfth Symposium on Usable Privacy and Security ({SOUPS} 2016),
pages 175–188, 2016.

[74] R. Zhao and C. Yue. All your browser-saved passwords could belong to
us: A security analysis and a cloud-based new design. In Proceedings of
the third ACM conference on Data and application security and privacy,
pages 333–340, 2013.

https://github.com/keepassxreboot/keepassxc-browser/blob/develop/keepassxc-browser/common/sites.js
https://github.com/keepassxreboot/keepassxc-browser/blob/develop/keepassxc-browser/common/sites.js

	Introduction
	Related Work
	Background on Password Managers
	Interaction with websites

	User Complaints Evaluation
	Choosing Password Managers (PWMs)
	Collecting User Feedback
	Classification and Problem Case Development
	Limitations
	Interaction Problems

	Interaction Problem Evaluation
	Methodology
	Limitations
	Results
	Replication Package

	Discussion
	User complaints
	PWM Evaluation
	Recommendations

	Conclusion
	References

