
You Are Not Your Developer, Either: A Research
Agenda for Usable Security and Privacy Research

Beyond End Users

Yasemin Acar and Sascha Fahl
CISPA, Saarland University

{acar,fahl}@cs.uni-saarland.de

Michelle L. Mazurek
University of Maryland

mmazurek@umd.edu

Abstract—While researchers have developed many tools, tech-
niques, and protocols for improving software security, exploits
and breaches are only becoming more frequent. Some of this
gap between theoretical security and actual vulnerability can
be explained by insufficient consideration of human factors,
broadly termed usability, when developing these mechanisms.
In particular, security mechanisms may be difficult to use, may
conflict with other priorities, or may assume more security
knowledge than users possess. For almost 20 years, the usable
security community has investigated how to improve the usability
of security tools and interfaces aimed at end users. More recently,
the community has begun to apply similar techniques in the
context of improving security tools—such as APIs and bug-
finding software—aimed not at end users but at developers,
whose security errors are magnified across all users of their
products. In this paper, we review key lessons learned from usable
security for end users and consider how to apply them in the
context of developers. We propose a research agenda aimed at
developing a high-quality, comprehensive literature for usable
security for developers, including: investigating how to conduct
reliable research in this context; understanding developers’
attitudes, knowledge, and priorities; measuring the status quo;
and developing improved tools and interventions in the future.

I. INTRODUCTION

In recent years, attacks and data breaches have become

commonplace. Personal and corporate data is attacked over

and over again [1]. Security researchers have demonstrated

cryptographic algorithms, memory-safe applications, and ac-

cess control that can deliver provably strong (if not perfect)

protection from many such attacks. Nonetheless, the rate of

cyber attacks seems to only increase [2]. Historically, the huge

gap between the theoretical strong security offered by these

mechanisms and actual low security in practice is often caused

by the poor usability of security solutions.
Email encryption is one impressive example: asymmet-

ric encryption dates from the 1970s [3], [4] and PGP [5]

was introduced in 1991, but even in today’s environment

of organized cybercrime and nation-state surveillance, almost

no one uses end-to-end email encryption. In 1999, Whitten

and Tygar’s seminal paper analyzing email encryption as a

usability problem [6] helped to establish a new research field,

which later became the usable security and privacy community.

Since then, usability problems—broadly defined to include

other human and social science factors, such as economics

and cognitive biases—have been identified as a major factor in

users disregarding existing security and privacy mechanisms.

The usable security and privacy research community aims to

improve the usability of existing mechanisms as well as to

offer guidelines for designing new mechanisms with better

usability built in. Topics that have received significant atten-

tion from this community include email encryption [6]–[11],

passwords and alternative authentication mechanisms [12]–

[17], and security-relevant user interactions such as warning

messages and security indicators [18]–[23].

While progress has been made in improving end-users’

adherence and sometimes even comprehension of security-

critical issues, a key constituency has thus far been understud-

ied: Software developers make security and privacy decisions

that have a huge impact on end-user (and therefore overall

ecosystem) security, and they suffer from similar comprehen-

sion and adherence problems to end users. Although usable

security and privacy research focusing on developers is still

in an early stage, preliminary results illustrate a common

theme: Developers are regular users of security and privacy

mechanisms (e.g., security APIs, protocols, and tools), but

are by no means security experts [24], [25]. We argue for a

systematic approach to studying developers within the security

ecosystem. While developer-usability studies targeting specific

security tools and APIs are becoming more common [26]–

[28], topics are fragmented and quality research norms have

not yet been firmly established. In this position paper, we

argue for systematizing future research on usable security 1 for

developers, including working to validate promising research

methods and identifying key areas of focus.

II. LESSONS LEARNED FROM STUDYING USABLE

SECURITY FOR END-USERS

We briefly discuss key lessons learned from more than 15

years of research into usable security for end users, and how

these lessons can apply in the developer space.

1For simplicity, throughout this paper we refer to security and privacy as
security. We find that privacy-preserving or -enhancing behavior often requires
the use of secure mechanisms, while good security practice often protects
privacy. The research techniques and approaches we discuss generally apply
well for both.

2016 IEEE Cybersecurity Development

© 2016, Yasemin Acar. Under license to IEEE.

DOI 10.1109/SecDev.2016.20

3

2016 IEEE Cybersecurity Development

© 2016, Yasemin Acar. Under license to IEEE.

DOI 10.1109/SecDev.2016.20

3



A. You Are Not Your User

Plentiful research has demonstrated that unusable end-user

security tools and interfaces frequently arise when the de-

velopers of these tools make unfounded assumptions about

what the intended users know and understand. Examples

include everything from encryption tools that expect users to

understand the difference between encryption and signing [6],

to browser warnings and app permission descriptions that use

too much security jargon [18], to expecting users to understand

the importance of software updates [29]–[32]. In each of these

cases, security experts have expected end users to know and

care about security, perhaps because of assumed similarity

bias, in which people often assume that everyone is similar

to themselves and the people they know [33].

This lesson applies even more strongly when considering

security tools and APIs used by developers. Because develop-

ers by definition have some level of technical expertise, it is

easy for security experts to mistakenly believe that developer-

users also understand security, or that expert tools need not be

designed with usability in mind. It seems likely this fallacy is

at the root of unusable cryptography APIs, as well as difficult-

to-interpret outputs from bug-finding tools.

In the case of end users, these problems have been mitigated

somewhat by reminding tool developers to consider the differ-

ent needs and attitudes of end users, and by explicitly evalu-

ating usability rather than making assumptions about what is

usable [22], [34]. We believe similar solutions can be helpful

when building security tools for developers; in Section III-C,

we discuss potential targets for usability evaluation.

B. Security Is A Secondary Concern

The usable-security field has firmly established that security

is a secondary concern for end users; when it gets in the way

of a user’s primary goal, security becomes an annoyance to

be worked around or ignored. As examples, end users adopt

insecure password practices when requirements become too

onerous [35], [36] and ignore security icons and warnings

when they are motivated to proceed to their goal [19], [37].

This concept applies equally to developers, who have prior-

ities—functional correctness, time to market, maintainability,

economics, compliance with other corporate policies—that

sometimes appear to conflict with security and are often more

salient [38]. For end users, the usable-security community

frequently recommends taking users out of the loop as much as

possible [39], such as by making updates automatic, choosing

secure defaults, and forcing browsers to use HTTPS. When

removing the user from the loop is infeasible, the community

has often emphasized opinionated design, also called nudging

or soft paternalism, which encourages users to make more

secure choices even if they do not entirely understand the situ-

ation. For example, browser certificate warnings are designed

to discourage click-through [40]. In Section IV we discuss

ideas for applying these approaches to developers as well.

C. More is Not Always Better

A third key lesson from usable security for end users

is that simply adding more and more security advice and

recommendations is not a viable solution. Piling on advice

can overwhelm users and lead them to give up on taking any

steps to improve security; similarly, encountering too many

warnings that don’t lead to actual harms causes habituation

and disengagement. While the usable-security community

continues to struggle with this problem, recently researchers

are acknowledging the overabundance of unhelpful advice and

even advocating rollback of some overzealous policies, such as

password expiration [41]–[43]. This overabundance of security

advice has shifted the problem for end users to choosing which

information sources they trust or rely on the most [44].

Related issues are beginning to be seen in the advocacy

of secure development; for example, the proliferation of new,

sometimes incompatible, encryption libraries claiming both

security and usability with little or no empirical evaluation.

While the end-user security community has not identified any

comprehensive solution to this problem, we encourage the

developer security community to bear in mind that simply

asking developers to do more and more in the name of security

is unlikely to help and may even exacerbate the problem.

III. A RESEARCH AGENDA FOR USABLE SECURITY FOR

DEVELOPERS

We believe that thus far, usable security for developers has

been a critically under-investigated area. Recently, the topic

has begun to receive more attention, and we expect that in the

near future many researchers will address it. In this section, we

lay out a high-level research agenda covering what we believe

are the most important needs in this area. We organize our

suggestions into four areas to investigate: how best to conduct

usable security research with developers; how developers think

about security in the context of their needs and priorities; how

usable current security tools and APIs are and where they fall

short; and how to build more usable tools and paradigms in

the future.

A. Methodology and Ecological Validity

One major concern with studying usable security for devel-

opers is ecological validity: whether or not the circumstances

of a study accurately reflect the real world [45]. While this is

a challenge for most user studies, it’s especially challenging

when targeting usable security for developers, for several

reasons. Because security is a secondary concern, asking

users about it directly may not effectively reflect realistic

circumstances, in which developers may not be thinking about

security or in which other priorities may outweigh security

concerns. In addition, recruiting professional developers to

study can be challenging: depending on the researcher’s ge-

ographical area, there may not be many developers locally

available, and those who are may be too busy to attend

studies. The hourly rates these highly specialized people are

typically paid will often exceed the researcher’s available

44



budget. Finally, real-life development tasks are complicated

and may be difficult to simulate in a study environment.

To address this challenge, we need methodological research

investigating how to study developers’ security behavior. One

critical question is whether and in what circumstances com-

puter science students, who are often studied out of conve-

nience, can effectively substitute for professional developers.

In our work examining how information resources impact

developers’ decision making, we asked both students and

professionals to complete four time-limited, security-related

programming tasks. We found that professionals outperformed

students in functional correctness, but were no more se-

cure [46]. While this result is intriguing, further investigation

is needed. Is this result reproducible with other security tasks

and environments? What constitutes a professional? How

do professionals from big and small companies differ, and

how do they compare to graduate and undergraduate students

from different universities? Are lab studies necessary, or can

online studies be useful? To answer these questions, controlled

comparison studies are needed; we are currently conducting

one such study comparing students and professionals.

Researchers should also investigate what kind of study

tasks work best for evaluating security tools and behaviors;

to do this, researchers should aim to compare controlled

studies with field observations. We have previously applied

similar methods to evaluate ecological validity for password

studies [15], [16], while other researchers have addressed

ecological validity, e.g., for studies of security indicators [19].

We can also learn from the software engineering community’s

work investigating developers and their tools and behaviors in

non-security domains [47]–[50].

Key research questions:

• Which recruitment strategies provide representative

samples efficiently?

• Which study and task designs are most appropriate

to measure developers’ motivations, attitudes and

knowledge?

B. Understanding Developers’ Motivations, Attitudes, and
Knowledge

In a landmark 1999 article, Adams and Sasse challenged

the conventional wisdom that users reject security behaviors—

in this case password policies—due primarily to laziness or

carelessness [35]. Instead, they argued, misbehavior stemmed

primarily from misunderstandings, competing priorities, and

challenging interfaces. A similar consensus is starting to

emerge with respect to developers’ security behaviors: al-

though historically developers have been seen as “experts”

in contrast to less knowledgeable end users, many (most)

developers are not experts in security, and make errors through

misunderstandings and difficult-to-use interfaces. In addition,

developers have priorities—such as adding functionality, op-

timizing the end-user experience, reducing time-to-market,

and reducing development costs—that often appear to be in

conflict with best security practices. Before we can develop

better tools, interfaces, and educational interventions to pro-

mote secure development, we must investigate what developers

understand about security and how they view secure develop-

ment in the context of their overall goals.

Acquiring this understanding can be approached in sev-

eral ways. We can use qualitative interviews and quantita-

tive surveys to ask developers directly about their security

knowledge, attitudes, and decision-making processes. This

parallels Adams and Sasse’s work [35], as well as many

subsequent papers evaluating end-user security attitudes and

behaviors [30], [44], [51]–[53]. Balebako et al. used this

approach to investigate how mobile app developers make

privacy-relevant decisions, finding that lack of awareness and

lack of resources contribute to poor privacy decisions [25].

In the same study, the authors report on some use of third-

party security tools considered more secure than homemade

implementations. We expect that a similar study focused ex-

plicitly on security attitudes and behaviors would find related

barriers and more in-depth analysis of why and how third-party

security tools are and are not used.

While studies in which participants are asked explicitly

about their attitudes and behaviors provide valuable data

and important context, self-reporting is inherently limited by

human recall and by well-known psychological biases [54],

[55]. To get a complete picture, therefore, we must supple-

ment these findings with measurements of actual behavior.

This can be obtained via in-situ observational studies (e.g.,

following developers to design meetings, observing their work

in progress, etc.), and by field or diary studies in which

developers report on their security-relevant decisions as they

make them. This might include observing decisions like which

libraries to use, what security threat model is appropriate, and

whether to use, e.g., bug-finding or fuzzing tools. While these

studies can be complicated, expensive, and time-consuming,

they provide rich data with strong validity that often cannot

be obtained any other way.

Key research questions:

• What motivates developers to use secure mecha-

nisms and concepts, and how can we use this to

improve the status quo?

• What prevents developers from adhering to secure

recommendations, and how can we counter this?

• Which information sources do developers turn to

and trust, and how can we use this to improve

security?

• Where do developers lack knowledge, and how can

we either provide them with secure information

sources or secure their software without requiring

security education?

C. Investigating the Status Quo

In addition to understanding developers’ knowledge and

attitudes, we must investigate how existing APIs, documen-

55



tation, and tools encourage or discourage good security be-

haviors. By identifying which tools work well and which fail,

and why, we can improve existing tools and build new ones

that are more likely to be effective.

Existing tools and APIs can be evaluated via field and

measurement studies that capture security behaviors, imple-

mentations, and mistakes across a broad swathe of software.

For example, several studies have examined the use of TLS

and cryptography more generally in mobile apps and identi-

fied common pitfalls and errors [24], [56]–[58]. We propose

further measurements, such as examining how insecure code

propagates on GitHub, or studying how popularity of different

security libraries correlates with common errors. These kinds

of measurements can potentially be extended by contacting

involved developers for follow-up interviews concerning how

libraries were chosen or how errors were made.

While field measurements provide a valuable large-scale

look at how tools and APIs are used in practice, they do

not allow researchers to isolate and test specific hypotheses.

Thus, we also recommend controlled lab experiments to

measure how concrete factors affect developers’ decisions.

For example, in recent work we examined how using Stack

Overflow compared to official documentation affected the

security of code Android developers wrote in response to

short programming tasks [46]. We are currently deploying

an experiment comparing how different cryptography APIs

affect the code developers write. Researchers should also

measure the usability of existing bug-finding and fuzzing tools

to identify problems and pain points; these studies could be

modeled on investigations of usability for security tools used

by end users, such as [6]–[11], [19], [59].

In addition to field studies and lab measurements, expert

review (including, e.g., cognitive walkthroughs and heuristic
evaluations) of tools and APIs for usability can provide valu-

able feedback to their authors with less time and expense. We

propose that researchers evaluate groups of related APIs and

tools to provide clear evidence of the benefits and drawbacks

of each. Expert reviews are frequently used in HCI generally

and in usable security specifically [6], [60]–[62].

Key research questions:

• How well do current APIs, documentation, and

tools support secure behavior?

• In which ways should future APIs, documentation,

and tools be designed to encourage secure behav-

ior?

• Which of APIs, documentation, and tools has the

most promising impact on security; where should

we place the focus of our research?

IV. PROMISING CONCRETE NEXT STEPS

In this section we discuss how to apply the lessons learned

for end users, described in Section II, in a developer context

to improve existing mechanisms and build better ones.

a) Usable security APIs: The software engineering com-

munity has developed guidelines for designing usable APIs

and tools generally [63]–[67], and security researchers have

considered API usability at a high level as well [68], [69].

Guidelines from all these sources should be synthesized and

extended to provide concrete objectives for security APIs.

We are currently developing a framework for measuring the

usability of security APIs, and applying this framework to

evaluate security APIs in the wild. Further work should be

done both to make existing APIs more usable—including via

better documentation—as well as to introduce new APIs that

balance security and usability.

b) Secure, usable information resources: We have shown

that developers make insecure choices when the (usable)

resource they turn to for help is offering quick but insecure

fixes [46]. To address this, we advocate making official docu-

mentation (which already promotes security) more interactive

and usable, and to introduce security monitoring to usable

resources. More research is needed on how to best combine

usability with security in developer resources.

c) Developer tool support: Integrating tool support into

developer environments can both raise security awareness and

provide direct security feedback. For example, we are working

on an exemplar Android Studio plugin that applies static code

analysis to help developers to turn insecure choices into more

secure ones [70]. While developer support and IDEs that make

developing faster and easier exist, no security tools to speak

of are in use.

d) Taking developers out of the loop: We recommend

removing developers from the security loop whenever possi-

ble. We have shown in the past that developers who imple-

ment custom SSL/TLS handling nearly always make insecure

choices; in response, we suggested configurable TLS handling

at the OS level [24]. In a similar vein, we recommend

further research aimed at moving security management and

security-critical decisions from apps to the OS and framework

levels whenever possible. This includes but is not limited to

automatic security library updates, or automatic permission

requests on Android. Not only could this reduce developers’

opportunities to make errors, but it is also compatible with the

tendency to prioritize reducing development time and effort

over security correctness. Research is needed to identify cases

where this is possible as well as to suggest effective ways

to remove developers from the security loop without overly

restricting functionality.

V. CONCLUSION

In this paper we advocate a systematic, organized effort to

understand developers’ attitudes, needs, and priorities toward

security. Based on this understanding, security tools and APIs

can be improved to increase adoption and adherence. Advanc-

ing usable security for developers will be challenging, but it

has the potential to bring already-known solutions into greater

use and provide enormous benefits to the overall security

ecosystem.

66



REFERENCES

[1] S. Ramanan, “The top 10 security breaches of 2015,” http://www.forbes.
com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/
#7a67d9d5694f, 2015.

[2] Symantec, “2016 Internet Security Threat Report.”

[3] W. Diffie and M. Hellman, “New directions in cryptography,” in IEEE
Transactions on Information Theory, 1976.

[4] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” in Communications of
the ACM, 1978.

[5] P. Zimmermann, “PGP version 2.6.2 user’s guide,” ftp://ftp.pgpi.org/pub/
pgp/2.x/doc/pgpdoc1.txt, 1994.

[6] A. Whitten and J. D. Tygar, “Why johnny can’t encrypt: A usability
evaluation of pgp 5.0,” in USENIX Security, 1999.

[7] S. Ruoti, N. Kim, B. Ben, T. van der Horst, and K. Seamons, “Confused
Johnny: When automatic encryption leads to confusion and mistakes,”
in Symposium on Usable Privacy and Security, 2013.

[8] S. Fahl, M. Harbach, T. Muders, M. Smith, and U. Sander, “Helping
johnny 2.0 to encrypt his facebook conversations,” in Symposium on
Usable Privacy and Security, 2012.

[9] S. Sheng, L. Broderick, C. A. Koranda, and J. J. Hyland, “Why johnny
still can’t encrypt: evaluating the usability of email encryption software,”
in Symposium on Usable Privacy and Security, 2006.

[10] S. L. Garfinkel and R. C. Miller, “Johnny 2: a user test of key continuity
management with s/mime and outlook express,” in Symposium on Usable
Privacy and Security, 2005.

[11] S. Ruoti, J. Andersen, S. Heidbrink, M. O’Neill, E. Vaziripour, J. Wu,
D. Zappala, and K. Seamons, “”we’re on the same page”: A usability
study of secure email using pairs of novice users,” in Conference on
Human Factors in Computing Systems, 2016.

[12] R. Biddle, S. Chiasson, and P. C. van Oorschot, “Graphical passwords:
Learning from the first twelve years,” in Computing Surveys, 2012.

[13] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, “Of passwords and people:
measuring the effect of password-composition policies,” in Conference
on Human Factors in Computing Systems, 2011.

[14] M. Harbach, A. De Luca, and S. Egelman, “The Anatomy of Smartphone
Unlocking,” in Conference on Human Factors in Computing Systems,
2016.

[15] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F.
Cranor, P. G. Kelley, R. Shay, and B. Ur, “Measuring password
guessability for an entire university,” in Conference on Computer and
Communications Security, 2013.

[16] S. Fahl, M. Harbach, Y. Acar, and M. Smith, “On The Ecological
Validity of a Password Study,” in Symposium on Usable Privacy and
Security, 2013.

[17] F. Stajano, “Pico: No More Passwords!” in International Workshop on
Security Protocols, 2011.

[18] J. Sunshine, S. Egelman, H. Almuhimedi, and N. Atri, “Crying Wolf: An
Empirical Study of SSL Warning Effectiveness.” in USENIX Security,
2009.

[19] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer, “The Emperor’s
New Security Indicators,” in IEEE Symposium on Security and Privacy,
2007.

[20] D. Akhawe and A. P. Felt, “Alice in Warningland: A Large-Scale Field
Study of Browser Security Warning Effectiveness.” in USENIX Security,
2013.

[21] A. P. Felt, R. W. Reeder, A. Ainslie, H. Harris, M. Walker, C. Thompson,
M. E. Acer, E. Morant, and S. Consolvo, “Rethinking connection
security indicators,” in Symposium on Usable Privacy and Security,
2016.

[22] J. Weinberger and A. P. Felt, “A week to remember: The impact of
browser warning storage policies,” in Symposium on Usable Privacy
and Security, 2016.

[23] C. Bravo-Lillo, S. Komanduri, L. F. Cranor, R. W. Reeder, M. Sleeper,
J. Downs, and S. Schechter, “Your attention please: Designing security-
decision UIs to make genuine risks harder to ignore,” in Symposium on
Usable Privacy and Security, 2013.

[24] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
SSL Development in an Appified World,” in Conference on Computer
and Communications Security, 2013.

[25] R. Balebako, A. Marsh, J. Lin, and J. Hong, “The Privacy and Security
Behaviors of Smartphone App Developers,” in Workshop on Usable
Security, 2014.

[26] D. Botta, R. Werlinger, A. Gagné, K. Beznosov, L. Iverson, S. Fels, and
B. Fisher, “Towards understanding it security professionals and their
tools,” in Symposium on Usable Privacy and Security, 2007.

[27] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton, “Aside: Ide support
for web application security,” in Computer Security Applications Con-
ference, 2011.

[28] K. Y, S. D. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
Johnny to Analyze Malware: A Usability-Optimized Decompiler and
Malware Analysis User Study,” in IEEE Symposium on Security and
Privacy, 2016.

[29] A. Mathur, J. Engel, S. Sobti, V. Chang, and M. Chetty, “”they keep
coming back like zombies”: Improving software updating interfaces,” in
Symposium on Usable Privacy and Security, 2016.

[30] K. E. Vaniea, E. Rader, and R. Wash, “Betrayed by updates,” in
Conference on Human Factors in Computing Systems, 2014.

[31] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl, “To pin or
not to pin—helping app developers bullet proof their tls connections,”
in USENIX Security, 2015.

[32] S. Fahl, S. Dechand, H. Perl, F. Fischer, J. Smrcek, and M. Smith, “Hey,
nsa: Stay away from my market! future proofing app markets against
powerful attackers,” in Conference on Computer and Communications
Security, 2014.

[33] R. Holtz and N. Miller, “Assumed similarity and opinion certainty,” in
Journal of Personality and Social Psychology, 1985.

[34] R. Reeder, E. C. Kowalczyk, and A. Shostack, “Helping engineers design
neat security warnings,” in Symposium On Usable Privacy and Security,
2011.

[35] A. Adams and M. A. Sasse, “Users are not the Enemy,” in Communi-
cations of the ACM, 1999.

[36] Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern
password expiration: an algorithmic framework and empirical analysis,”
in Conference on Computer and Communications Security, 2010.

[37] J. Lee, L. Bauer, and M. L. Mazurek, “The Effectiveness of Security
Images in Internet Banking,” in IEEE Internet Computing, 2015.

[38] R. Werlinger, K. Hawkey, and K. Beznosov, “An integrated view
of human, organizational, and technological challenges of it security
management,” in Information Management & Computer Security, 2009.

[39] L. Cranor, “A Framework for Reasoning About the Human in the Loop,”
in Usability, Psychology and Security, 2008.

[40] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja,
A. Bettes, H. Harris, and J. Grimes, “Improving ssl warnings: Com-
prehension and adherence,” in Conference on Human Factors and
Computing Systems, 2015.

[41] L. Cranor, “Time to rethink mandatory password changes,”
https://www.ftc.gov/news-events/blogs/techftc/2016/03/
time-rethink-mandatory-password-changes/, 2016.

[42] C. Herley, “More Is Not the Answer,” in IEEE Security & Privacy, 2014.
[43] S. Chiasson and P. C. van Oorschot, “Quantifying the security advantage

of password expiration policies,” in Designs, Codes and Cryptography,
2015.

[44] E. M. Redmiles, A. R. Malone, and M. L. Mazurek, “I Think They’re
Trying to Tell Me Something: Advice Sources and Selection for Digital
Security,” in IEEE Symposium on Security and Privacy, 2016.

[45] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects:
A comparative study ofstudents and professionals in lead-time impact
assessment,” in Empirical Software Engineering, 2000.

[46] Y. Acar, M. Backes, S. Fahl, D. Kim, and M. L. Mazurek, “You Get
Where You’re Looking For: The Impact Of Information Sources On
Code Security,” in IEEE Symposium on Security and Privacy, 2016.

[47] T. Scheller and E. Kühn, “Usability Evaluation of Configuration-Based
API Design Concepts,” in Human Factors in Computing and Informatics,
2013.

[48] B. Ellis, J. Stylos, and B. Myers, “The Factory Pattern in API Design:
A Usability Evaluation,” in International Conference on Software Engi-
neering, 2007.

[49] J. Stylos and B. A. Myers, “The implications of method placement on
API learnability,” in ACM SIGSOFT International Symposium, 2008.

[50] C. Burns, J. Ferreira, T. D. Hellmann, and F. Maurer, “Usable results
from the field of API usability: A systematic mapping and further
analysis,” in IEEE Symposium on Visual Languages and Human-Centric
Computing, 2012.

77



[51] R. Wash and E. Rader, “Too Much Knowledge? Security Beliefs and
Protective Behaviors Among United States Internet Users,” in Sympo-
sium on Usable Privacy and Security, 2015.

[52] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence
in smartphone security and privacy,” in Symposium on Usable Privacy
and Security, 2012.

[53] D. K. Smetters and N. Good, “How users use access control,” in
Symposium on Usable Privacy and Security, 2009.

[54] K. Kelley, “Good practice in the conduct and reporting of survey
research,” in International Journal for Quality in Health Care, vol. 15,
2003.

[55] A. Tversky and D. Kahneman, “Judgment under Uncertainty: Heuristics
and Biases,” in Utility, Probability, and Human Decision Making, 1975.

[56] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Empirical
Study of Cryptographic Misuse in Android Applications,” in Conference
on Computer and Communications Security, 2013.

[57] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous Code in the World: Validating SSL
Vertificates in non-browser Software,” in Conference on Computer and
Communications Security, 2012.

[58] B. Reaves, N. Scaife, A. Bates, and P. Traynor, “Mo(bile) Money,
Mo(bile) Problems: Analysis of Branchless Banking Applications in the
Developing World,” in USENIX Security, 2015.

[59] A. P. Felt, R. W. Reeder, A. Ainslie, H. Harris, M. Walker, C. Thompson,
M. E. Acer, E. Morant, and S. Consolvo, “Rethinking connection
security indicators,” in Symposium on Usable Privacy and Security,

2016.
[60] C. A. Brodie, C.-M. Karat, and J. Karat, “An empirical study of natural

language parsing of privacy policy rules using the SPARCLE policy
workbench,” in Symposium on Usable Privacy and Security, 2006.

[61] J. Clark, P. C. van Oorschot, and C. Adams, “Usability of anonymous
web browsing: an examination of Tor interfaces and deployability,” in
Symposium on Usable Privacy and Security, 2007.

[62] S. Eskandari, D. Barrera, and E. Stobert, “A first look at the usability
of bitcoin key management,” in Workshop on Usable Security, 2015.

[63] B. A. Myers and J. Stylos, “Improving API usability,” in Communica-
tions of the ACM, 2016.

[64] J. Nielsen, Usability engineering. Morgan Kaufmann, 1993.
[65] S. Clarke, “Using the cognitive dimensions framework to de-

sign usable APIs,” https://blogs.msdn.microsoft.com/stevencl/2003/11/
14/using-the-cognitive-dimensions-framework-to-design-usable-apis/.

[66] M. Henning, “API design matters,” in Queue, 2007.
[67] J. Bloch, “How to design a good API and why it matters,” in Companion

to the ACM SIGPLAN conference, 2006.
[68] M. Green and M. Smith, “Developers are not the enemy! the need for

usable security apis,” in IEEE Security & Privacy, To appear.
[69] G. Wurster and P. C. van Oorschot, “The developer is the enemy,” in

New Security Paradigms Workshop, 2008.
[70] D. Cuong Nguyen, Y. Acar, S. Fahl, and M. Backes, “POSTER: Devel-

opers Are Users Too: Helping Developers Write Privacy Preserving and
Secure (Android) Code,” in Symposium on Usable Privacy and Security,
2016.

88


