
Open access to the Proceedings of the
Fourteenth Symposium

on Usable Privacy and Security
is sponsored by USENIX.

This paper is included in the Proceedings of the
Fourteenth Symposium on Usable Privacy and Security.

August 12–14, 2018 • Baltimore, MD, USA

ISBN 978-1-931971-45-4

Developers Deserve Security Warnings, Too:
On the Effect of Integrated Security Advice

on Cryptographic API Misuse
Peter Leo Gorski and Luigi Lo Iacono, Cologne University of Applied Sciences;

Dominik Wermke and Christian Stransky, Leibniz University Hannover;
Sebastian Möller, Technical University Berlin; Yasemin Acar, Leibniz University Hannover;

Sascha Fahl, Ruhr-University Bochum

https://www.usenix.org/conference/soups2018/presentation/gorski

Developers Deserve Security Warnings, Too

On the Effect of Integrated Security Advice on Cryptographic API Misuse

Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke∗,
Christian Stransky∗, Sebastian Moeller†, Yasemin Acar∗, Sascha Fahl∗∗

Cologne University of Applied Sciences, ∗Leibniz University Hannover,
†Quality and Usability Lab, Technical University Berlin, ∗∗Ruhr-University Bochum

ABSTRACT
Cryptographic API misuse is responsible for a large num-
ber of software vulnerabilities. In many cases developers are
overburdened by the complex set of programming choices
and their security implications. Past studies have identi-
fied significant challenges when using cryptographic APIs
that lack a certain set of usability features (e. g. easy-to-use
documentation or meaningful warning and error messages)
leading to an especially high likelihood of writing function-
ally correct but insecure code.

To support software developers in writing more secure code,
this work investigates a novel approach aimed at these hard-
to-use cryptographic APIs. In a controlled online exper-
iment with 53 participants, we study the effectiveness of
API-integrated security advice which informs about an API
misuse and places secure programming hints as guidance
close to the developer. This allows us to address insecure
cryptographic choices including encryption algorithms, key
sizes, modes of operation and hashing algorithms with help-
ful documentation in the guise of warnings. Whenever pos-
sible, the security advice proposes code changes to fix the
responsible security issues. We find that our approach sig-
nificantly improves code security. 73% of the participants
who received the security advice fixed their insecure code.

We evaluate the opportunities and challenges of adopting
API-integrated security advice and illustrate the potential
to reduce the negative implications of cryptographic API
misuse and help developers write more secure code.

1 Introduction
A large number of software vulnerabilities are caused by de-
velopers who misuse security APIs [12,19,36]. Previous work
identified multiple trouble spots including secure network
connections [15], the use of permissions in mobile apps [17]
and the use of cryptographic APIs [1,32]. Some of the most
serious data breaches in recent history were caused by not
properly using TLS to secure data in transit or not securely

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2018.
August 12–14, 2018, Baltimore, MD, USA.

storing data in rest [12,19]. Such incidents affect millions or
even billions of users worldwide and jeopardize their security
and privacy.

In this work we focus on the challenges of using crypto-
graphic APIs securely. Using cryptographic APIs correctly
in many cases requires detailed knowledge and overburdens
non-security expert developers on a regular basis. Acar et al.
conducted several studies and investigated the usability of
cryptographic APIs and the impact of information resources
developers use to solve programming questions on code se-
curity [1, 2]. They find that the design of cryptographic
APIs and the quality of available developer documentation
amongst other factors have a significant impact on code se-
curity. In particular, the availability of easy-to-understand
documentation and ready-to-use and functional code snip-
pets helped participants in their studies to produce more
secure results. Motivated by their findings and results of
measurement studies of real world software repositories [2],
we design and implement a novel approach to help software
developers write more secure cryptographic code.

While there is previous work that tries to improve code se-
curity by enhancing API simplicity [23] or by providing IDE
plugins [29, 34], we propose a different and novel approach
that allows providers of existing and future cryptographic
APIs to improve code security. Therefore, they do not have
to change their programming interfaces, rely on the devel-
opment and integration of plugins for integrated develop-
ment environments (IDEs) or hope that security of unsafe
information sources such as Stack Overflow becomes bet-
ter. Instead, we propose the integration of effective secu-
rity advice directly into cryptographic APIs. We develop an
API-integrated security advice concept that provides con-
text sensitive help and offers ready-to-use and secure code
snippets to fix security issues. We implement our approach
for Python and the PyCrypto cryptographic API and con-
duct a between-subjects online study with 53 experienced
Python developers. In the course of this study we try to
answer the following research questions:

RQ1: Does API-integrated security advice have a significant
effect on code security? With this research question we try
to assess the ability of our approach to improve code secu-
rity. We analyze all changes made to the code after security
advice has been shown. We find that our approach had a
significant positive impact on 73% of our participants who
left their code insecure at the first place: They upgraded
bad cryptographic choices to secure ones.

USENIX Association Fourteenth Symposium on Usable Privacy and Security 265

RQ2: Does API-integrated security advice have a significant
impact on perceived API usability? We were interested in
whether providing context sensitive security advice affects
the perceived usability of the PyCrypto API. We find that
while security significantly improved, the security advice had
no statistical significant impact on the perceived usability.

RQ3: How does our approach compare to other approaches?
Previous work by Acar et al. [1,2] found that interfaces and
supported use cases of cryptographic APIs and the types
of information resources developers use have a significant
impact on code security. Nguyen et al. [34] tested their
Android studio plugin and found that their approach has a
significant contribution to code security.

We find that similar to high quality developer documenta-
tion, good API design and helpful IDE plugins, our approach
has a significantly positive effect on code security, but allows
API providers to improve code security for existing cryp-
tographic APIs in a low-level approach without having to
change API design or relying on third party tools.

Our work makes the following contributions:

1. We design a security advice concept that is directly
integrated into an API, drawing on guidelines, sugges-
tions and research on human factors on security APIs
and warning messages.

2. We implement our concept for the PyCrypto API.
3. We conduct a between-subjects online controlled ex-

periment with experienced Python developers to test
the effectiveness of our approach.

4. We assess the real world applicability, limitations and
potential of API-integrated security advice, and con-
clude with lessons learned from our experiment.

2 Related Work
We discuss related work in two key areas: research on human
factors on security APIs and tools for developers; research
on security warning messages.

Research on Security APIs and Tools: Researchers
have investigated challenges developers have when interact-
ing with security APIs and tools.

Both Wurster and Oorschot [41] and Green and Smith [22]
analyze the developers’ roles in writing secure software and
come to the conclusion that security is often only of sec-
ondary or tertiary concern for developers and that (secu-
rity) APIs and libraries need to be designed with usability
in mind. Lo Iacono and Gorski [30] present a classification
of security APIs according to their abstraction level. They
evaluate their approach by investigating a set of popular
software development kits and conducting an online study
with developers. They find that developers prefer APIs that
provide comfortable abstractions and enable them to take
full control as required by the specific programming task.
Gorski and Lo Iacono propose a set of eleven characteristics
to evaluate security API usability as they find that security
API usability goes beyond general API usability [21].

Nadi et al. manually examined the top 100 Java cryptogra-
phy posts on Stack Overflow and found that a majority of
problems were related to API complexity rather than a lack

of domain knowledge [32]. Relatedly, Acar et al. investigated
how the use of different documentation resources affects de-
velopers’ security decisions, including decisions about cer-
tificate validation. They report that good usability and
the availability of ready-to-use and functional code snippets
as part of documentation significantly impacts code secu-
rity [2]. Barik et al. [6] conducted an eye-tracking study to
investigate the use of Java compiler error messages finding
that the difficulty of reading error messages is comparable
to reading source code. Acar et al. conducted a controlled
experiment online and compared the usability of different
cryptographic libraries for Python [1]. They found that in
addition to safe defaults, the number of supported use cases
and the availability of good documentation have a signifi-
cant impact on code security. Naiakshina et al. conducted a
qualitative developer study and investigated how computer
science students implemented secure password storage [33].
We develop and test a novel approach that supports develop-
ers using a security warning that presents context-sensitive
documentation and code snippets as part of an API.

Nguyen et al. present a plugin for the Android Studio IDE
called FixDroid which helps developers write more secure
code by highlighting insecure code and providing quick fixes.
In a user study they find that FixDroid users write sig-
nificantly more secure code than participants without Fix-
Droid [34]. Similarly, Krueger et al. present the CogniCrypt
tool which is an Eclipse IDE plugin for the Java program-
ming language that helps developers to securely use cryp-
tographic APIs by auto-generating secure code for common
tasks [29]. Xie et al. present and evaluate an Eclipse IDE
called ASIDE that interactively reminds programmers of se-
cure programming practices [42]. Johnson et al. conducted
a user study and investigated why developers do not use
static analysis tools to find bugs and report that too many
false positives and complicated errors messages were signifi-
cant hurdles for their participants [25]. We propose an IDE-
agnostic approach that allows API and library providers to
improve code security without having to rely on third parties
such as IDE plugins or static code analysis tools.

To the best of our knowledge, in contrast to previous work
our paper is the first to introduce and study security advice
as part of an API.

Research on Security Warnings: Researchers have in-
vestigated challenges in designing usable security warnings.
Due to a lack of related work for software developers we limit
the following presentation to previous work for warnings for
end-users.

Sunshine et al. conducted multiple studies to investigate the
effectiveness of SSL warnings and found while they could
improve warning message effectiveness still many partici-
pants clicked-through a warning. In addition to further
improve warnings, they recommend to reduce their occur-
rence [38]. Felt et al. experimented with SSL warnings for
Google Chrome and found that while they could not improve
the rate of comprehension of the warnings’ text significantly,
opinionated design drastically improved the warnings’ ad-
herence rate [4, 16,18].

Weinberger and Felt run a field study to investigate how long
the Chrome browser should store users’ decisions for SSL
warnings to minimize the effect of habituation [40]. Sim-

266 Fourteenth Symposium on Usable Privacy and Security USENIX Association

ilarly, Vance et al. conduct an fMRI experiment to study
warning message habituation [39]. Both studies conclude
that the risk of habituation decreases after one week.

Almuhimedi et al. investigate factors that contribute to why
Chrome users click-through their malware warnings and find
that familiarity with a website had significant impact on
users’ click-through behavior [5]. Egelman et al. investigated
the difference between passive and active warnings against
phishing attacks and found that active warnings were more
successful [13]. Bravo-Lillo et al. designed and tested multi-
ple attractors for security warnings [8].

Bauer et al. present and discuss a set of design guidelines
for warning messages [7]. Our approach follows their guide-
lines and includes lessons learned from other related work
presented above.

In contrast to end-users, our work is the first to investigate
a novel security warning concept targeted at software devel-
opers.

3 API Level Advantages
Making security advice part of the API has multiple advan-
tages over other approaches:

Environment Agnostic: Integrating security advice into
an API instead of providing extensions or plugins for inte-
grated development environments (IDEs) or editors (e. g. [29,
34]) makes the security warnings agnostic to developers’ pro-
gramming environments. Instead of having to provide mul-
tiple extensions or plugins for different programming envi-
ronments only one implementation for a particular API is
needed. API integration is not just agnostic to the IDE or
editor used but also to the way developers use programming
language interpreters or compilers. Security warnings that
are part of an API can provide helpful information in ter-
minal as well as in IDE environments.

Immediate Feedback: Making security advice part of an
API can provide context sensitive and secure information
(e. g. secure code snippets or targeted information) as im-
mediate feedback. Such an approach has the potential to
prevent developers from falling back on insecure informa-
tion resources online such as Stack Overflow [2].

A Bottom Up Approach: An integrated feedback mech-
anism gives API providers the power to provide very specific
and context sensitive security advice and make it available
through the regular distribution channels of an API. API
users immediately benefit from feedback integration after
using an updated API version. Instead of having to install
or update external third party tools such as plugins or ex-
tensions, relying on the regular update channels of an API
has the potential to speed up distribution of feedback mech-
anisms.

4 Security Advice Design
Below we discuss design decisions for our security warning.

Figure 1: Design concept of our security feedback mecha-
nism.

4.1 Design Decisions
The main goal of our approach is to help users of security
APIs to avoid insecure programming choices whenever pos-
sible. However, due to the complex nature of security de-
cisions and the fact that information security is not a top
priority [30] for many developers, we expected this to be
challenging.

There is no previous work on designing security warnings
with a specific focus on making secure programming choices.
Therefore, we based our work on previous research and lessons
learned from warning message design for end-users. Espe-
cially, the warning design guidelines by Bauer et al. [7] pro-
vide a comprehensive list of principles for designing security
warnings with a focus on end-users. We rely on their gen-
eral and abstract principles for designing developer centered
security warnings. Thus we adapted design goals from their
guidelines and applied them to an API-integrated security
advice concept. Additionally, we considered lessons learned
from previous secure programming studies with software de-
velopers [1–3,6].

Figure 1 illustrates the design concept of the security feed-
back mechanism we present below. Although we contribute
a design concept based on existing principles and lessons
learned, we do not comparatively evaluate different design
approaches in our work. We expect this to be future work.

Goal 1: Follow a Consistent Layout. In contrast to security
warnings for graphical user interfaces, an API-integrated se-
curity feedback mechanism that relies on terminal and con-
sole output only allows for limited interactions with users.
Interface control elements such as buttons are hardly avail-
able in such an environment.

However, we still aimed to provide a consistent look and feel
and layout concept for security warnings in different scenar-
ios. Figure 1 illustrates all seven sections relevant for our
security warning. The upper left corner (1) is used to indi-
cate a dangerous situation. We use section (2) to give a brief
description of the security warning’s root cause and section
(3) to point the developer to the file and line number that
triggered the warning. Section (4) is used to communicate

USENIX Association Fourteenth Symposium on Usable Privacy and Security 267

consequences of using the insecure API calls that were re-
sponsible for the security warning. We use sections (5) and
(6) to provide context sensitive and actionable advice for the
developer. Section (5) provides actionable advice to improve
code security while section (6) shows information that allows
developers to turn off future security warnings. Section (7)
provides links to further background information.

Goal 2: Describe the Risk Comprehensively. We aim to
clearly and comprehensively communicate the underlying
risk to the developer. In contrast to TLS warnings [15] or
Android permission dialogs [17], our security warning does
not have to deal with false positives. Even in cases when de-
velopers made insecure choices intentionally, e.g., for back-
ward compatibility requirements of legacy systems, a secu-
rity warning is still a true positive.

We rely on sections (1), (2) and (4) to communicate the re-
spective risk to the developer. Section (1) uses a red flashing
text icon “/!\”, indicating a warning sign. Additionally, we
integrated “WARNING” text in capital letters and red color
in section (1). Section (2) uses red colored text explaining
the root causes of the warning, e. g.: “You are using the weak
encryption algorithm RC4 (aka ARC4 or ARCFOUR)”. Ad-
ditional details to communicate the existing risk and its po-
tential consequences are provided in section (4). In case of
an RC4 warning, e.g., “The use of ARC4 puts the processed
data’s confidentiality at risk and may lead to data disclo-
sure.”

Goal 3: Present Relevant Contextual Information. We aim
to present relevant contextual information including the spe-
cific location in the source code that triggered the security
advice. This helps developers to identify the insecure API
use that needs to be fixed. In addition to the filename and
line number, section (3) includes a snippet of the source code
that triggered the warning.

Goal 4: Offer Meaningful Options. The most crucial aspect
of a security warning is to offer meaningful options to get out
of the situation that triggered the warning. In our case we
expect the developer to modify code to either fix a security
issue or suppress the warning message for future runs (i. e.
click through the warning). In section (5) we provide a se-
cure code snippet to turn the insecure code into secure code
and offer an insecure option in section (6) which disables
this specific security warning in future runs. Additionally,
we provide links to more background information such as
OWASP or NIST guidelines for secure programming.

Goal 5: Be Concise and Accurate. The guideline of Bauer
et al. [7] focused on the design of end-user warnings and rec-
ommends to refrain from technical jargon. However, since
we target software developers, we do not adopt this recom-
mendation. Technical jargon from the software development
domain such as specific names, locations and values of source
codes are common elements for developers. Thus, we made
such terms part of the warning message. Terms, concepts,
technologies and standards from the cryptography domain,
however, can not be expected to be general knowledge of a
developer [1]. Hence, we omitted cryptographic jargon as
much as possible.

Figure 2: Security advice design of the patched version of
PyCrypto triggered by an RC4 usage and displayed in a
terminal running python code.

5 Implementation
We implemented the security warning concept from above
for a subset of the PyCrypto API for the Python program-
ming language. Figure 2 shows a sample security warning
for the insecure RC4 algorithm for symmetric encryption.
To assess API call security, we followed the classification
provided by Acar et al. [1].

Selecting Python and PyCrypto: We chose to use Python
for our experiment because it is very popular, used across
many communities and supports many different fields of ap-
plication. Since Python is easy to read and write and has
a large user base [20] we reasoned that recruiting Python
developers for our study would be straightforward.

The Python cryptographic PyCrypto [35] API is widely
used amongst Python developers. The API provides low
level interfaces for cryptographic functionalities, features sym-
metric as well as asymmetric encryption and supports mul-
tiple hashing algorithms as well as some utility features.

PyCrypto comes with primarily auto-generated documen-
tation that includes minimal code examples. The docu-
mentation recommends the Advanced Encryption Standard
(AES) and provides an example, but also describes the weaker

268 Fourteenth Symposium on Usable Privacy and Security USENIX Association

Data Encryption Standard (DES) as cryptographically se-
cure.1 The documentation warns against weak exclusive-
or (XOR) encryption. However, the documentation does
not warn against using the default Electronic Code Book
(ECB) mode, or the default empty IV, neither of which is
secure. [11,31]

We chose this API as Acar et al. [1] had identified that
developers using this API are likely to produce functionally
correct but insecure code. This indicates in general a high
potential for improvement. Furthermore, more than 30% of
307 participants in another study [3] preferred PyCrypto
over other cryptographic APIs for Python.

5.1 How our Patch works
The PyCrypto patch hooks specific API calls that create
instances of weak cryptographic objects such as the call to
Crypto.Cipher.ARC2.new() which creates a new cipher ob-
ject that uses the insecure ARC2 [27] algorithm. Whenever
an insecure cryptographic object is created, our patch calls
an advice method that uses contextual information to show
a security warning. To fetch contextual information, the ad-
vice method relies on Python’s inspect module and accesses
the cryptographic object’s stack frame. The stack frame is
used to add information about the responsible file, the line
number in that file and the name of the method that trig-
gered a new security warning. Using the respective stack
frame information and information about the cryptographic
object instantiation that called the security advice method
is then used to compile a context specific security warning
(cf. Section 4).

5.2 Covered API Calls
For the security warnings, we focused on aspects that we
wanted to test in a developer study later on (cf. Section 6).
Table 1 gives an overview of both the API calls the security
advice does cover and the API calls for which we did not
implement security warnings.

In particular, we addressed weak symmetric encryption al-
gorithms (cf. Table 1) and recommended the use of the Ad-
vanced Encrytion Standard (AES) as a secure alternative.
This is in line with the recommendation of the official devel-
oper documentation of PyCrypto. The security warning
also recommended an upgrade from the insecure Electronic
Code Book (ECB) mode of operation to the secure counter
mode (CTR) streaming cipher. In general, we recommended
the counter mode (CTR) as a secure mode of operation in
all symmetric security warnings. CTR is considered a se-
cure mode of operation and is recommended by the official
PyCrypto documentation.

In addition to security warnings for insecure symmetric en-
cryption algorithms, we triggered security warnings for weak
hash algorithms (cf. Table 1) and recommended the use of
the SHA-512 hash function as a secure alternative.

In general, all security warnings we provided adhered to
the documentation to not confuse participants in case they
looked up programming questions.

1This might be due to the fact that the library has last been
updated on 20 Jun 2014.

5.3 Not Implemented
We did not implement a security warning for every insecure
cryptographic choice PyCrypto users can make. While
we implemented all features that affected the programming
tasks in our developer study (cf. Section 5.2), our patch
does not cover the PyCrypto API calls below.2

We did not implement security warnings for any of the public
key and digital signature schemes provided by PyCrypto
(cf. Table 1).

6 Developer Study
We used an online, between-subjects study to compare how
effectively developers could write correct, secure code using
either PyCrypto as a control, or our patched version of
PyCrypto with the security intervention. We recruited de-
velopers with demonstrated Python experience (on GitHub)
for an online study; we also recruited via mailing lists and
developer forums.

Participants were assigned to complete a short set of pro-
gramming tasks; they were randomly assigned either the
PyCrypto control condition, or the PyCrypto patch con-
dition, where we tested our security warning.

Within each condition, task order was randomized. All par-
ticipants were given a symmetric encryption task and a sym-
metric key generation and storage task.

After finishing the tasks, participants completed a brief exit
survey about the experience. We examined participants’
submitted code for functional correctness and security.

Ethics and Pre-testing: Due to the location of our uni-
versities, there was no formal IRB process. We did, how-
ever, model our study material and procedures after an IRB-
approved study and adhered to the strict German data and
privacy protection laws.

We conducted expert reviews for the design and implementa-
tion of our security advice. Therefore, we asked experienced
human computer interaction researchers to walk through the
warnings and give us feedback. Additionally, we pre-tested
the functionality of our PyCrypto patch extensively with
participants we excluded from the study later on.

6.1 Study Design
Our study has two conditions; it is modeled closely after
the Acar et al. 2017 study on cryptographic Python APIs,
which compared the usability of five cryptographic APIs for
Python, namely PyCrypto, cryptography.io, M2Crypto,
Keyczar and PyNaCl [1], in a between-subjects study for
symmetric and asymmetric encryption via three symmetric
or four asymmetric programming tasks: (a) a key gener-
ation and storage task, (b) an encryption and decryption
task, (c) key derivation (symmetric condition only), (d) cer-
tificate validation (asymmetric condition only). They find
that usability varies wildly across libraries and tasks, with
poor usability contributing to insecure code.

In our study, we compare the PyCrypto library to our
patched version of PyCrypto. The PyCrypto condition

2However, extending the patch to cover a more comprehen-
sive list of features is possible.

USENIX Association Fourteenth Symposium on Usable Privacy and Security 269

Triggers a Security Warning Security Advice

Crypto.Cipher�

AES.new(k, AES.MODE ECB, iv) → AES.new(k, AES.MODE CTR, iv)�

CAST.new(k, CAST.MODE ECB, iv) → CAST.new(k, CAST.MODE CTR, iv)�

CAST.new(length(k) < 128 bit, mode, iv)

→ AES.new(k, AES.MODE CTR, iv)

�

ARC2.new(k, mode, iv)�

DES.new(k, mode, iv)�

DES3.new(k, mode, iv)�

Blowfish.new(k, mode, iv)�

XOR.new(k, mode, iv)�

ARC4.new(k, mode, iv)

Crypto.Hash�

MD2.new()
→ SHA512.new()

�

MD4.new()�

MD5.new()�

RIPEMD.new()�

SHA.new()

Not Implemented

Crypto.Cipher�

PKCS1 OAEP�

PKCS1 v1 5

Crypto.Protocol�

AllOrNothing.isInt

Crypto.PublicKey�

DSA�

ElGamal�

RSA

Crypto.Signature�

PKCS1 PSS�

PKCS1 v1 5

Crypto.Util�

RFC1751�

strxor

Table 1: All implemented/not implemented PyCrypto API calls. Implemented calls trigger security warnings; k is the key
parameter; iv is the initialization vector parameter. Not implemented calls did not affect our study results, as they were not
useful for our selection of study tasks.

serves as a control. In this study, we focus on symmetric
encryption only, and only assign two tasks in random order:
In an online Python coding environment [37], our partici-
pants were asked to solve two randomly ordered tasks – a
symmetric encryption and key generation and storage task
– after which they were asked to complete an exit survey
that asked usability questions about the library they used
in their condition, familiarity with programming in general
and Python in particular, and demographic information. In
the PyCrypto patch condition, participants were asked to
solve both programming tasks with the pre-installed patched
PyCrypto version that showed our security advice when
triggered according to Section 5.2. Participants could then
take the advice for their final solution; ignoring or bypassing
the security advice was also possible. In the PyCrypto con-
dition, participants were asked to solve the same two tasks
without the support of security advice. Our control condi-
tion replicates the 2017 PyCrypto condition for a subset of
two out of three of the original tasks [1]. We can therefore
not only compare our results across our conditions, but also
to the 2017 study.

6.2 Recruitment and Framing
Our study reuses most of the infrastructure of the publicly
available Developer Observatory [1,37], and our recruitment
strategy closely resembles that described in past studies with
the same framework. To gain meaningful, ecologically valid
results, we aimed to recruit developers familiar with Python.

We sent a total of 38,533 email invites to randomly sampled
contributors from 100,000 publicly available Python reposi-
tories. We additionally posted invitations in Python forums
and sent emails to our personal network.

In our invitation, we asked Python developers to participate
in a Python study via an online code editor. Our invitations
did not mention a security or cryptography context to avoid
biasing potential participants. The invitation email included
links to learn more about the study and to blacklist the
recipient email from any further communication related to
our research, a request which we honored. The participation
link contained a unique pseudonymous identifier (ID), which

allowed us to assign study results and GitHub statistics to
the invited email addresses.

Recipients who clicked the link to participate in the study
were sent to a landing page containing a consent form. Once
they confirmed their legal age, consented to the study and
were comfortable with participating in the study in En-
glish, they were introduced to the study framing previously
used by Acar et al. [1]. We asked participants to imagine
they were developing code for an app called CitizenMea-
sure, “a new global monitoring system that will allow citizen-
scientists to travel to remote locations and make measure-
ments about such issues as water pollution, deforestation,
child labor, and human trafficking. Please keep in mind that
our citizen-scientists may be operating in locations that are
potentially dangerous, collecting information that powerful
interests want kept secret. Our citizen scientists may have
their devices confiscated and hacked.” We hoped that this
framing would both engage participants’ interest and nudge
them to attempt to write secure code. We also gave instruc-
tions for the study infrastructure, which we describe next.

6.3 Experiment Infrastructure
Our online developer study uses our publicly available frame-
work (cf. [37]). The framework allows participants to write
and test cryptographic code in their browser, is based on a
Jupyter Notebook environment [26] and was hosted on our
server. This allowed us to control the development environ-
ment including available libraries (PyCrypto in this study)
and to retrieve written code and corresponding metadata
(e.g., copy&paste events).

As our security advice implementation (cf. Section 5) uses
ANSI ESCAPE sequences [24] to colorize text in diverse
terminals on various platforms, we had to update Jupyter
Notebook to the latest version 4.4.0 in order to be able to
display our warning appropriately (ANSI colors were not
processed correctly by Jupyter until version 4.1.0). Due to
API changes we had to adjust some parts of the Developer
Observatories implementation. Depending on conditions,
the original version of PyCrypto or the patched version of
PyCrypto were used by a participant. Because both share

270 Fourteenth Symposium on Usable Privacy and Security USENIX Association

PyCrypto	Implementation	

PyCrypto	API	 Documentation	

(Security)	Information	Flow	

Task	Implementation	

Interpreter	
processing	implementation	

Logging	facility	
Print	to...	

Operating	System	

Jupyter	Notebook	Browser	IDE	

Scheme,	Position,	Size,	Sounds,		
Character	Encoding	

PyCrypto	

Python	Project	

Jupyter	Terminal	

Code	
Examples	

External	
Ressources	

Security	Advice	Patch	

Homogeneous	test	system	
of	Developer	Observatory	

Figure 3: Security Information Flows in development envi-
ronments through the example of the cryptographic Python
API PyCrypto and Developer Observatory [37]

exactly the same name space and the identical API, we in-
stalled each library in a virtual Python 2.7.12 environment
of which only one was used as kernel in Jupyter.

Figure 3 illustrates how the information of our security ad-
vice is technically transferred from the patched PyCrypto
API via the Python intepreter and Python logging facility
to the participants homogeneous test environment of Devel-
oper Observatory.

To prevent interference between participants, each partic-
ipant was assigned to a Notebook running on a separate
Amazon Web Service (AWS) instance. We maintained a
pool of prepared instances so that each new participant
could begin without waiting for an instance to boot. In-
stances were shut down when each participant finished, to
avoid between-subjects contamination.

Tasks were shown one at a time, with a progress indicator
showing that the participant had completed, e. g., 1 of 2
tasks. For each task, participants were given buttons to
“Run and test” their code, and to move on using “Solved,
next task” or “Not solved, but next task.” After each button
press, we stored the participant’s current code, along with
metadata like timing, in a remote database.

Allowing participants to write and execute Python code
presents serious security concerns. To mitigate this, we re-
moved all unnecessary software packages from the AWS im-
age. We used the AWS firewall to restrict incoming traffic to
port 80 and prevent outgoing traffic other than to our study
database, which was password protected and restricted to
sanitized insert commands. All instances were shut down
within 4 hours of the last observed participant activity.

6.4 Task Design
To be able to compare our results not only to our own
control, but also to past results both in functionality out-
come, security outcome and usability, we re-used a subset
of tasks from the Acar et al. study on the usability of cryp-
tographic APIs [1]. These tasks had previously been cho-
sen to be “short enough so that the uncompensated partic-
ipants would be likely to complete them before losing in-
terest, but still complex enough to be interesting and allow
for some mistakes” and designed to “model real world prob-
lems that Python developers could reasonably be expected
to encounter in their professional career.” We chose two sym-
metric encryption tasks: generating an encryption key and
storing it securely in a password-protected file, and using
the key to encrypt some plain text.

For both tasks, participants were provided with stub code
and some commented instructions. These stubs were de-
signed to make the task clear and ensure the results could be
easily evaluated. We also provided a main method pre-filled
with code to test the provided stubs. This helped orient par-
ticipants and saved time, but it did prevent us from learning
how participants might have designed their own tests.

We also asked participants to please use only the PyCrypto
documentation, if at all possible, and to report (in com-
ments) any additional documentation resources they con-
sulted. Task order was randomized between participants.

Replication: In the control group, participants were asked
to solve the tasks using PyCrypto as-is. Except for a
change in task design (i.e., removing the decryption task),
this condition is identical with the Acar et al. study Py-
Crypto condition for their set of symmetric tasks.

Security Advice Condition: Participants in the PyCrypto
patch condition were asked to solve the same set of tasks us-
ing PyCrypto; they were not alerted that they were using a
patched version of PyCrypto. If they successfully executed
functional code that was insecure according to the classifi-
cation in Table 1, and the insecure programming choice was
covered by the patched version of PyCrypto, the respective
warning message was shown.

6.5 Exit Survey
Once both tasks had been completed or abandoned, the par-
ticipants were directed to a short exit survey. We asked for
their opinions about the tasks they had completed and the
PyCrypto API, including the Acar et al. usability ques-
tionnaire for security APIs [1]. We also collected their de-
mographics and programming experience. The participant’s
code for each task was displayed (imported from our database)
for their reference with each question about that task. We
were also interested in whether participants perceived the
security warning at all, if it was helpful and if participants
could recall the security warning’s content. The Exit survey
can be found in the Appendix D.

6.6 Evaluating Solutions
We based our analysis on the code submitted for each task by
our participants. Submitted solutions were evaluated both
for functional correctness and security. We evaluated each

USENIX Association Fourteenth Symposium on Usable Privacy and Security 271

task independently with two coders based on a subset of the
codebook provided by [1]. Disagreements between the two
coders were adjudicated by a third coder allowing us to solve
all conflicts.

Functionality: For each programming task, we assigned a
participant a functionality score of 1 if the code ran without
errors, passed the tests and completed the assigned task, or
0 if not.

Security: We assigned security scores only to those solu-
tions which were graded as functional. To determine a secu-
rity score, we considered several different security parame-
ters. Our scoring followed the relevant parts of the security
scoring in [1]. Still we give a brief summary of the security
scoring we applied.

For key generation, we checked key size and randomness.
For key storage we checked if encryption keys were actually
encrypted and if a proper encryption key was derived from
the password we provided. For key derivation, we scored
use of a static or empty salt, HMAC-SHA1 or below as the
pseudorandom function, and less than 10,000 iterations as
insecure. For the symmetric encryption task, participants
had to select encryption parameters. Therefore, we scored
the security of the chosen encryption algorithm, mode of op-
eration, and initialization vector. We scored ARC2, ARC4,
Blowfish, (3)DES, and XOR as insecure, and AES as secure.
We scored the ECB as an insecure mode of operation and
scored CBC, CTR and CFB as secure. Static, zero or empty
initialization vectors were scored insecure.

We calculated Krippendorff’ alpha [28] for the initial coding
by two coders across all security codes; α = 0.764, which is
within reasonable bounds for agreement [14]. Conflicts were
resolved afterwards.

Participant Stories: In addition to our assessment of code
functionality and security, we analyzed participants’ code
in detail, qualitatively, based on the recorded code and
console output that we automatically stored for each test
run of code. We recreated the sequence of task solutions
that each participant executed, the participant story, where
we could see whether they were shown our security advice
and which version was shown, whether or not they subse-
quently adapted their code to incorporate our suggestions,
and whether or not this reaction lead to a secure version
of their solution. We additionally see whether they reported
having seen a warning in the exit survey, and whether or not
they perceived it as useful. We use these participant stories
to give insight into four questions: (1) did the developers see
the warning?, (2) did they react by modifying their code?
(3) did they use our examples in their code? and (4) did
this consideration lead to improved code security?

7 Data Analysis
In our data analysis, we use the non-parametric Mann-
Whitney-U test (MWU) to compare two groups with con-
tinuous responses, compare categorical responses with Per-
son’s chi-squared test (χ2) or instead with Fisher’s exact test
where applicable, and fit regression models to our results.

For each regression analysis, we consider a set of candidate
models and select the model with the lowest Akaike Informa-
tion Criterion (AIC) [9]. In cases when we consider results
on a per-task rather than a per-participant basis, we use a
mixed model that adds a random intercept to account for
multiple tasks from the same participant. We consider can-
didate models consisting of the required factors “Task” and
“Warning displayed”, as well as (where applicable) the par-
ticipant random intercept, plus every possible combination
of the optional variables. Required factors, optional factors,
and corresponding baseline values are described in Table 2.

We present the outcome of our regressions in tables where
each row contains a factor and the corresponding change of
the analyzed outcome in relation to the baseline of the given
factor. For logistic regressions, the odds ratio (O.R.) mea-
sures change in likelihood of the targeted outcome in relation
to the baseline factor O.R. of one. Linear regression mod-
els measure change from baseline factors with a coefficient
(Coef.) of zero for the value of the outcome. For each factor
of a model, we also list a 95% confidence interval (C.I.) and
a p-value indicating statistical significance.

8 Results
We present the results for our study based on 53 valid partic-
ipants. Participants were generally successful in functionally
solving the tasks, while security results varied across con-
ditions, the patched condition being an improvement over
PyCrypto where applicable. This improvement was pro-
nounced: participants who wrote code that triggered a warn-
ing message were 15× as likely to convert it to a secure con-
dition as opposed to participants who wrote similar insecure
code in the PyCrypto condition. However, the effective-
ness of our PyCrypto patch was negatively impacted by
the limited applicability of the warnings.

8.1 Participants
We recruited participants for our study by sending email
invitations to GitHub developers (cf. Figure 4) and by ad-
vertising the study in developer forums. Of 38,533 sent invi-
tation emails, 3,422 (8.9%) bounced and 65 (0.2%) recipients
requested to be removed from our mailing list.

Figure 4: Boxplots comparing invited participants with valid
participants and participants from Acar et al. [1]. The cen-
ter line indicates the median; the boxes indicate the first and
third quartiles. The whiskers extend to ±1.5 times the in-
terquartile range. Outliers greater than 150 were truncated
for space.

272 Fourteenth Symposium on Usable Privacy and Security USENIX Association

Factor Description Baseline

Required

Task Performed task (Storage or Encryption). Encryption

Warning True or False, whether a warning was displayed. False

Participant Random effect accounting for repeated measures. n/a

Optional

Used documentation True or False, used API documentation, self-reported. False

Development experience Development experience in years, self-reported. n/a

Python experience Python programming experience in years, self-reported. n/a

PyCrypto experience Previous experience with the PyCrypto library (used, seen, none), self-reported. None

Security task experience Previous experience in solving security tasks (written, seen, none), self-reported. None

Table 2: Factors used in regression models. Model candidates were defined using all possible combinations of optional factors,
with the required factors included in every candidate. Final models were selected by minimum AIC. Categorical factors are
individually compared to the baseline.

We received no reports of technical errors with the survey
infrastructure; one participant refused to participate in the
study, because our Amazon AWS instances were not acces-
sible via HTTPS. One participant refused to participate be-
cause he perceived our invitation email to be dubious.

272 people agreed to the consent form and 177 started work-
ing on the tasks. Of those, 70 finished the tasks and 68 com-
pleted the exit survey. We excluded 15 participants since re-
sults indicated a lack of serious answers (4) or were the result
of curious clicking-through (3). Unless stated otherwise, we
report results for the remaining 53 valid participants which
finished the tasks and completed our exit survey.

The majority of our 53 valid participants reported being
male (49, 92.5%) while the remaining participants reported
being female (1), other (1), or preferred to not answer (2).
The reported age was between 20 and 60 (Mean 34.9, SD
8.1). 44 of our participants received invitation emails as
GitHub developers, while the remaining 9 were recruited on
developer forums. Our participants reported a mean devel-
oper experience of 15.8 years (SD 8.2, prefer not to answer:
3) and a mean Python experience of 8.44 years (SD 4.7, pre-
fer not to answer: 3). 48 reported their occupation as being
professionals and 3 reported being students (Both: 1, prefer
not to answer: 1).

8.2 Dropouts
95 did not continue to the study while 177 started the first
programming tasks by clicking the begin button. 57 partic-
ipants stopped in the key storage task, additional 44 in the
content encryption task and 4 in the final test routine before
finishing the online programming part of the study. 29 had
written code to solve a task in contrast to 76 who did not
modify any text in the Jupyter notebook. 5 dropped out of
our PyCrypto patch condition after having triggered secu-
rity advice. 70 proceeded to the exit survey. 68 participants
finished the exit survey of which we had to exclude 15 per-
sons due to non serious participation and technical issues in
our infrastructure.

We saw that out of 115 participants in the PyCrypto patch
condition, 90 participants dropped out of whom 5 were shown
a warning. However, the 26 who finished the study were
shown 11 warnings, so we assume that seeing a warning was
not a strong reason to drop out of the study. We compare

this to 34 dropouts out of 62 who started the PyCrypto
condition. The increased count of starting participants was
due to an effort to counterbalance for the limited applicabil-
ity of the warnings.

8.3 Results for Functionality
Generally, participants were well able to solve tasks: 87.8%
of attempted tasks were functional (89.7% functional in the
PyCrypto condition, 85.9% in the PyCrypto patch con-
dition).

We were unable to observe a significant impact, positive
or negative, of our warning messages on results, as shown
in Table 3. Since the warning message was only presented
after functionally correct code was executed, this is to be
expected. However, the interruption caused by the warning
message did not cause developers to break their code.

Factor O.R. C.I. p-value

Storage Task 0.00 [0, ∞] 0.972
Warning displayed 0.22 [0.03, 1.9] 0.169

Development experience 0.95 [0.84, 1.07] 0.369
Python experience 1.19 [0.93, 1.52] 0.169

Table 3: Results of the final logistic regression model exam-
ining whether displayed warnings affect task functionality.
Odds ratio (O.R.) indicates relative likelihood of a task be-
ing functional. Some trends are observable but no results
are statistically significant. See Table 2 for further details.

8.4 Results for Security
For security, we observed 26.9% secure solutions in the Py-
Crypto condition; compared with 50.7% in the PyCrypto
patch condition. We were not able to obtain a meaningful
regression model (cf. Appendix B), caused by the small num-
ber of tasks that triggered and ended up with insecure code
in the PyCrypto patch condition (11), as well as the small
number of tasks that would have triggered a warning but
were not modified to be secure in the PyCrypto condition
(22). We followed this inconclusive model up with Fisher’s
exact test (cf. Table 4, which was significant (p<0.01), with
an odds ratio of 56. The warning messages were noticed by
participants who saw them, which was clear both from self-
reported memory of them as well as changes in their code:

USENIX Association Fourteenth Symposium on Usable Privacy and Security 273

Secure
F T

Warning
F 21 1
T 3 8

Table 4: Contingency table for secure task solutions and
triggered warnings used in our Fisher’s exact test.

Factor Coef. C.I. p-value

Warning displayed 0.00 [0, 112.51] 0.271

Development experience 0.67 [0.35, 1.27] 0.229
Python experience 0.73 [0.23, 2.3] 0.595

Table 5: Linear regression model examining usability per-
ceived by participants. See Table 2 for further details.

the warning message lead to a change from initial insecure
code to a secure solution in most cases (8 out of 11). Gen-
erally, the applicability of the warning message was limited;
it applied to 24 of 44 insecure solutions across conditions,
and was shown in 11 of 22 insecure cases in the PyCrypto
patch condition.

Impact of Intervention on Perceived Usability: API
usability as interpreted by answers to questionnaire by Acar
et al. [1] based on the Cognitive Dimensions framework [10]
did not change for better or worse with the warning (cf.
Table 5). This is to be expected, as only one of our 10
questions that are calculated into the usability score focus
on meaningful warning/error messages. We investigate in
detail the answers to the following questions:

W1 The security warnings displayed in the console helped
to solve this task.

W2 When I made a mistake, I got a meaningful error mes-
sage/exception.

W3 Using the information from the error message/exception,
it was easy to fix my mistake.

We transform agreement on a 5-point likert-scale as follows:
neutral is represented by 0, while strong disagreement is
represented by −2 and strong agreement is represented by
+2. The mean agreement to W1 was 1 (median = 1) in
the PyCrypto condition compared with 0.76 (median =
1) in the PyCrypto patch condition (MWU-test; U=32.5;
p=0.4205). Participants gave a mean agreement of 0.593
(median = 1) to W2 in the PyCrypto condition compared
with 0.833 (median = 1) in the PyCrypto patch condition
(MWU-test; U=384; p=0.2167), and a mean agreement of
of 0.846 (median = 1) to W3 in the PyCrypto condition
compared with 0.917 (median = 1) in the PyCrypto patch
condition (MWU-test; U=296; p=0.7484). We interpret this
as a generally positive impression of our warning, despite our
preliminary fear of annoying or overwhelming developers.
However, even in these specific cases, perceptions were not
significantly more positive or negative than in the control
condition.

Figure 5: Likert-plot showing our participants’ perceptions
regarding functionality and security of their solutions. “I
don’t know” answers were omitted.

8.5 Detailed Task Analysis
Participants were asked to rate their functional and security
success after completing the tasks (cf. Figure 5). Interest-
ingly, we found that for the encryption tasks, all participants
who saw the warning message were correct in assessing their
solution’s security. We compare this to the control condi-
tion, where, for the encryption task, only 66% task security
ratings were correct in cases where the warning would have
applied. In the key storage task in the patched condition,
73% of assessments were correct, while all assessments were
correct in the control group.

Participant Stories: From the collected participants’ sto-
ries we derived further qualitative results. When focusing
on the content encryption task, 7 participants were shown
a security warning. All of them saw and remembered it, as
they reported in the exit survey. 2 of the 7 participants did
not choose to use our guidance to improve their code. One
tried to suppress the advice, another one ignored it. The
remaining 5 participants accepted the advice and modified
their code: 2 of them adopted the example code provided by
the advice; they later stated their satisfaction: “The warn-
ing helpfully directed me towards an improved solution, and
provided example code” and “The warning explained clearly
that DES was considered as insecure, and provided an ex-
ample to use AES instead. This helped me solving this task
in a more secure manner”. The remaining 3 participants
partially followed the advice: they did adapt their code in
response to the warning, but chose a different mode of opera-
tion than was suggested in the warning. The proposed solu-
tion recommended the use of standard encryption algorithm
AES in counter (CTR) mode. The 3 participant instanti-
ated AES in cipher block chaining (CBC) mode instead. A
closer look at their code revealed that 2 of them appeared
to have problems in transferring the suggested code snippet
into running code. While this points to a usability problem
with the warning/advice, we were able to observe that 4 out
of 5 participants who modified their code in reaction to our
warning at least attempted to adhere to our suggestion. Al-
together, 5 out of 7 participants who saw the warning for the
encryption task modified their code into a secure solution.

We could observe similar behavior for the key generation
and storage task. Here, 4 participants were shown security
advice; all of them noticed the warning. One ignored the
warning; the remaining 3 modified their code. One adopted
the suggested code snippet as-is; the other 2 chose CBC
mode instead of CTR mode.

274 Fourteenth Symposium on Usable Privacy and Security USENIX Association

Figure 6: Comparison between secure solution percentages
of libraries from Acar et al. [1] and our PyCrypto Con-
trol/Patch data. To match our tasks, only symmetric en-
cryption tasks are considered for libraries from Acar et al.

Limited applicability of warning message: The pro-
gramming tasks in our study were designed in a way par-
ticipants had to only use symmetric cryptography. Thus
we did not cover insecure asymmetric API features (cf. Ta-
ble 1). However, 4 participants in the patch condition solved
tasks by using asymmetric methods. They implemented key
derivation for asymmetric RSA keys or applied RSA to en-
crypt keys and messages. Our security advice implementa-
tion were not able to help these participants using symmetric
cryptography since it is not possible to give task sensitive
advice at this position. For this reason we had to exclude
these tasks from the detailed analysis.

8.6 Replication Results
Our study is based on the study that compared the usabil-
ity of different cryptographic APIs conducted by Acar et
al. [1]. This section discusses the aspects we replicated and
the replication results.

Our participants created a similar level of functional tasks
as compared to the 2017 study (cf. Figure 6). However,
our control group achieved better security results than the
original study.

Participants in the PyCrypto patch condition of our study
achieved a higher level of security than our own control
group, which places the PyCrypto patch condition among
the better-performing of libraries. While the effect of more
experience applies here, too, it is interesting to see that this
result was achieved without changes to the API abstrac-
tion level, learnability, documentation, Stack Overflow or
the study design. Additional details about common errors
of our participants compared to PyCrypto library users
from Acar et al. [1] can be found in Appendix C.

9 Limitations
We address multiple limitations below:

Security Advice Design: The design of our security ad-
vice is based on heuristics defined by previous research from

warning message design for end-users. Additionally, we con-
sidered lessons learned from previous work on secure pro-
gramming studies. After manual pre-testing and expert re-
views, we opted for a solution shown in Figure 1. However,
there might be more effective designs we did not consider
(e. g. following an opinionated design approach might pro-
vide better results). Although this is a limitation of our
current approach, results for our solution show a significant
positive impact on code security. Hence, we leave changes to
the design and comparing different versions to future work.

Security Advice Implementation: The implementation
of our security advice does not cover all possible insecure
choices PyCrypto users can make, e.g. we did not imple-
ment security warnings for PyCrypto’s asymmetric API
(cf. Section 5), however, these were not included in our
study design. We address participants using APIs not cov-
ered by our security advice, as well as cases where we failed
to show security advice (e.g., non-random IVs for symmetric
tasks) in our data analysis (cf. Section 7).

User Study: We decided to conduct an online study over
a laboratory study because it is difficult to recruit software
developers (rather than students) at a reasonable cost. This
design decision allowed us less control over the study en-
vironment. On the other side, we were able to recruit a
geographically diverse set of participants. Sadly, we could
not simply recruit participants from an online service such
as Amazon Mechanical Turk for end-user focused studies.
Since it is difficult to manage participants compensations
outside such infrastructures, we did not offer our partici-
pants compensation. Due to the combination of unsolicited
email invites and no compensation we expected a strong
self-selection bias and are aware of the fact that our results
might not necessarily be representative for all developers
but in particular for those who are interested and motivated
enough to participate. Our participants seem to be more
active than average GitHub users (cf. Appendix A). How-
ever, these limitations apply across both conditions. In any
online study, some participants may not provide full effort,
or may answer haphazardly. We attempted to remove any
obviously low-quality data before analysis, but cannot dis-
criminate perfectly. Additionally, we tested a simple and
limited scenario, which may have limited applicability to
complex real world code.

Real-world applicability: Critically, a real-world roll-out
of our advice is contingent on buy-in from library developers.
While this requirement severely limits employment across
all libraries, several cryptographic library developers have
reached out after the 2017 study and showed commitment
to improve their libraries’ usability. We therefore hope that
our study is not only of academic relevance, but can and will
be applied to libraries with a large userbase.

10 Discussion
Overall, we found that our API-integrated security advice
had a significantly positive effect on code security. How-
ever, we only tested a first implementation of our approach.
Changing parameters such as text or advice design might
result in even more secure code. We leave this to future

USENIX Association Fourteenth Symposium on Usable Privacy and Security 275

Functionality Security Usability

Information Source [2] 3 3 —
Cryptographic Library [1] 3 3 3
FixDroid [34] 7 3 —

Security Advice 7 3 7

Table 6: Comparison of the impact of our security warning
compared to previous investigations of the impact of other
factors on code security.

work. The majority of the participants who were shown
a security warning, fixed their code. Interestingly, showing
participants a security warning had no effect on the function-
ality of participant solutions. Also, the perceived usability
of PyCrypto as a cryptographic API was not affected by
the security warning. Only one participant who received the
advice, suppressed security warnings for future runs and two
participants copied secure code snippets from a warning into
their code.

Other Approaches: Comparing our security advice ap-
proach to previous work yields interesting results. Similar
to high quality developer documentation, simple program-
ming interfaces or IDE plugins our approach has a positive
impact on code security. However, in contrast we could not
find a positive effect on functionality (cf. Table 6). Also, in
contrast to API design, our warning did not have a positive
impact on perceived API usability.

However, our approach has multiple advantages in terms of
deployability (cf. Section 4) and allows API providers to
improve code security for existing cryptographic APIs in a
bottom-up approach without having to change API design
or relying on third party tools.

Lessons Learned: Most importantly we learned that API-
integrated security advice can have a significant impact on
code security. The majority of the participants who received
security advice turned insecure code into secure code. Also,
the adherence rate to our security advice (73%) was similar
to adherence rates for browser warnings reported in previous
work [15]. However, additionally we learned that designing
and implementing effective security advice is challenging and
has its limitations. Providing context sensitive information
and secure and ready-to-use code snippets is complex and
requires future work.

Future Work: Our work leaves room for future work in
multiple directions.

While we evaluated API-integrated security advice for
Python’s PyCrypto API and reported a significantly pos-
itive effect on code security, it is unclear to which extent
our concept can be applied to other security APIs. Hence,
we aim to implement and test similar security warning con-
cepts for a number of other security APIs such as for secure
networking (e. g. TLS and HTTPS) or authentication (e. g.
OAuth) as suggested by [30].

We followed security warning design guidelines by Bauer et
al. [7] and considered lessons learned from related work on
developer usable security research (cf. [1, 2, 34]) to design

a first attempt at security advice. However, we only chose
one specific design to test, and did not conduct any testing
against other designs. Likely, the concrete design, content
and presentation of the security advice can be improved.
Future work could investigate the effect of an opinionated
design approach or other security indicators. Warning mes-
sage research for end-users showed significant impact of such
factors on security (cf. [15]). Also, the integration of our
approach in an integrated development environment (IDE)
needs to be considered.

We conducted a between-subjects first contact study. In
future work we plan to conduct a large scale in-situ field
experiment to investigate the impact of habituation and fa-
tigue on our approach.

11 Conclusion
In this paper, we evaluate the first API-integrated security
advice for cryptographic APIs. We follow design guidelines
by Bauer et al. [7] and consider lessons learned from pre-
vious work on human factors research for software devel-
opers. We implement a first design approach for Python’s
PyCrypto API and use the Developer Observatory frame-
work [37] to conduct a between-subjects online controlled
experiment. We evaluate the impact of our security advice
on code security and perceived API usability and put our re-
sults in perspective of other approaches that try to support
developers to write more secure cryptographic code.

Overall, we find that our security advice had a significantly
positive impact on code security (RQ1) and did not affect
the perceived API usability of our participants (RQ2). Sim-
ilar to other approaches in previous work, the presented se-
curity advice helps to improve code security. Differently
from other work, our approach allows API providers them-
selves to fix security and usability shortcomings of their in-
terfaces without having to change programming interfaces or
relying on resources outside their sphere of influence, such
as third party information resources, IDE plugins or static
code analysis tools (RQ3).

12 Acknowledgments
The authors would like to thank Joe Calandrino and the
anonymous reviewers for providing feedback; and all partic-
ipants of this study for their voluntary participation. This
work has been partially funded by the German Federal Min-
istry of Education and Research within the funding program
”Forschung an Fachhochschulen”(contract no. 13FH016IX6).

13 References
[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim,

M. L. Mazurek, and C. Stransky. Comparing the
usability of cryptographic APIs. In 2017 IEEE
Symposium on Security and Privacy (SP), pages
154–171, 2017.

[2] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek,
and C. Stransky. You get where you’re looking for:
The impact of information sources on code security. In
2016 IEEE Symposium on Security and Privacy (SP),
pages 289–305, May 2016.

276 Fourteenth Symposium on Usable Privacy and Security USENIX Association

[3] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and
S. Fahl. Security developer studies with github users:
Exploring a convenience sample. In Thirteenth
Symposium on Usable Privacy and Security (SOUPS
2017), pages 81–95, Santa Clara, CA, 2017. USENIX
Association.

[4] D. Akhawe and A. P. Felt. Alice in warningland: A
large-scale field study of browser security warning
effectiveness. In Proceedings of the 22Nd USENIX
Conference on Security, SEC’13, pages 257–272,
Berkeley, CA, USA, 2013. USENIX Association.

[5] H. Almuhimedi, A. P. Felt, R. W. Reeder, and
S. Consolvo. Your reputation precedes you: History,
reputation, and the chrome malware warning. In 10th
Symposium On Usable Privacy and Security (SOUPS
2014), pages 113–128, Menlo Park, CA, 2014.
USENIX Association.

[6] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng,
E. Murphy-Hill, and C. Parnin. Do developers read
compiler error messages? In 39th IEEE/ACM
International Conference on Software Engineering
(ICSE), pages 575–585. IEEE, 2017.

[7] L. Bauer, C. Bravo-Lillo, L. Cranor, and E. Fragkaki.
Warning design guidelines. Technical Report
CMU-CyLab-13-002, CyLab, Carnegie Mellon
University, 2013.

[8] C. Bravo-Lillo, S. Komanduri, L. F. Cranor, R. W.
Reeder, M. Sleeper, J. Downs, and S. Schechter. Your
attention please: Designing security-decision uis to
make genuine risks harder to ignore. In Proceedings of
the Ninth Symposium on Usable Privacy and Security,
SOUPS ’13, pages 6:1–6:12, New York, NY, USA,
2013. ACM.

[9] K. P. Burnham. Multimodel Inference: Understanding
AIC and BIC in Model Selection. Sociological Methods
& Research, 33(2):261–304, 2004.

[10] S. Clarke. How usable are your APIs? In A. Oram and
G. Wilson, editors, Making software: what really
works, and why we believe it, Theory in practice, pages
545 – 565. O’Reilly, Beijing, 1 edition, 2010.

[11] Cwe-329: Not using a random iv with cbc mode.
[Online]. Available:
http://cwe.mitre.org/data/definitions/329.html, 2018.

[12] M. Egele, D. Brumley, Y. Fratantonio, and
C. Kruegel. An empirical study of cryptographic
misuse in android applications. In Proceedings of the
2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 73–84, New
York, NY, USA, 2013. ACM.

[13] S. Egelman, L. F. Cranor, and J. Hong. You’ve been
warned: An empirical study of the effectiveness of web
browser phishing warnings. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’08, pages 1065–1074, New York, NY,
USA, 2008. ACM.

[14] P. J. Fahy. Addressing some common problems in
transcript analysis. The International Review of
Research in Open and Distributed Learning, 1(2), 2001.

[15] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo,
S. Thyagaraja, A. Bettes, H. Harris, and J. Grimes.
Improving ssl warnings: Comprehension and
adherence. In Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems,
CHI ’15, pages 2893–2902, New York, NY, USA, 2015.
ACM.

[16] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo,
S. Thyagaraja, A. Bettes, H. Harris, and J. Grimes.
Improving SSL warnings: Comprehension and
adherence. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems,
CHI ’15, pages 2893–2902. ACM, 2015.

[17] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: User attention,
comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security,
SOUPS ’12, pages 3:1–3:14. ACM, 2012.

[18] A. P. Felt, R. W. Reeder, H. Almuhimedi, and
S. Consolvo. Experimenting at scale with google
chrome’s ssl warning. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’14, pages 2667–2670, New York, NY, USA, 2014.
ACM.

[19] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai,
D. Boneh, and V. Shmatikov. The most dangerous
code in the world: Validating ssl certificates in
non-browser software. In Proceedings of the 2012 ACM
Conference on Computer and Communications
Security, CCS ’12, pages 38–49, New York, NY, USA,
2012. ACM.

[20] Githut - programming languages and github. [Online].
Available: http://githut.info/, 2018.

[21] P. L. Gorski and L. Lo Iacono. Towards the Usability
Evaluation of Security APIs. In 10th International
Symposium on Human Aspects of Information
Security and Assurance (HAISA), 2016.

[22] M. Green and M. Smith. Developers are not the
enemy!: The need for usable security apis. IEEE
Security & Privacy, 14(5):40–46, 2016.

[23] S. Indela, M. Kulkarni, K. Nayak, and T. Dumitraş.
Helping johnny encrypt: Toward semantic interfaces
for cryptographic frameworks. In Proceedings of the
2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and
Software, Onward! 2016, pages 180–196, New York,
NY, USA, 2016. ACM.

[24] ISO/IEC 6429. Information technology – control
functions for coded character sets. [Online]. Available:
https://www.iso.org/standard/12782.html, 1992.
Third edition.

[25] B. Johnson, Y. Song, E. Murphy-Hill, and
R. Bowdidge. Why don’t software developers use
static analysis tools to find bugs? In Proceedings of
the 2013 International Conference on Software
Engineering, ICSE ’13, pages 672–681, Piscataway,
NJ, USA, 2013. IEEE Press.

[26] Jupyter notebook. [Online]. Available:
http://jupyter.org/, 2018.

[27] J. Kelsey, B. Schneier, and D. Wagner. Related-key
cryptanalysis of 3-way, biham-des,cast, des-x, newdes,
rc2, and tea. In Y. Han, T. Okamoto, and S. Qing,
editors, Information and Communications Security,
pages 233–246, Berlin, Heidelberg, 1997. Springer
Berlin Heidelberg.

[28] K. Krippendorff. Content Analysis: An Introduction to

USENIX Association Fourteenth Symposium on Usable Privacy and Security 277

Its Methodology (2nd ed.). SAGE Publications, 2004.

[29] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini,
E. Bodden, F. Göpfert, F. Günther, C. Weinert,
D. Demmler, and R. Kamath. Cognicrypt: Supporting
developers in using cryptography. In Proceedings of the
32Nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017. IEEE
Press, 2017.

[30] L. Lo Iacono and P. L. Gorski. I Do and I Understand.
Not Yet True for Security APIs. So Sad. In The 2nd
European Workshop on Usable Security, EuroUSEC
’17, 2017. doi: 10.14722/eurousec.2017.23015.

[31] A. J. Menezes, P. C. Van Oorschot, and S. A.
Vanstone. Handbook of applied cryptography. CRC
press, 1996.

[32] S. Nadi, S. Krüger, M. Mezini, and E. Bodden.
“Jumping Through Hoops”: Why do Java Developers
Struggle With Cryptography APIs? In Proceedings of
the 37th International Conference on Software
Engineering (ICSE 2016), 2016.

[33] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog,
S. Dechand, and M. Smith. Why do developers get
password storage wrong?: A qualitative usability
study. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications
Security, CCS ’17. ACM, 2017.

[34] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes,
C. Weir, and S. Fahl. A stitch in time: Supporting
android developers in writing secure code. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17.
ACM, 2017.

[35] Pycrypto - the python cryptography toolkit. [Online].
Available: https://www.dlitz.net/software/pycrypto/,
2018.

[36] B. Reaves, N. Scaife, A. Bates, P. Traynor, and K. R.
Butler. Mo(bile) money, mo(bile) problems: Analysis
of branchless banking applications in the developing
world. In 24th USENIX Security Symposium
(USENIX Security 15), pages 17–32, Washington,
D.C., 2015. USENIX Association.

[37] C. Stransky, Y. Acar, D. C. Nguyen, D. Wermke,
D. Kim, E. M. Redmiles, M. Backes, S. Garfinkel,
M. L. Mazurek, and S. Fahl. Lessons learned from
using an online platform to conduct large-scale, online
controlled security experiments with software
developers. In 10th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 17).
USENIX Association, 2017.

[38] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and
L. F. Cranor. Crying wolf: An empirical study of ssl
warning effectiveness. In Proceedings of the 18th
Conference on USENIX Security Symposium,
SSYM’09. USENIX Association, 2009.

[39] A. Vance, B. Kirwan, D. Bjornn, J. Jenkins, and B. B.
Anderson. What do we really know about how

habituation to warnings occurs over time?: A
longitudinal fmri study of habituation and
polymorphic warnings. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems,
CHI ’17, pages 2215–2227, New York, NY, USA, 2017.
ACM.

[40] J. Weinberger and A. P. Felt. A week to remember:
The impact of browser warning storage policies. In
Twelfth Symposium on Usable Privacy and Security
(SOUPS 2016), pages 15–25, Denver, CO, 2016.
USENIX Association.

[41] G. Wurster and P. C. van Oorschot. The developer is
the enemy. In Proceedings of the 2008 New Security
Paradigms Workshop, NSPW ’08, pages 89–97, New
York, NY, USA, 2008. ACM.

[42] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton.
ASIDE: IDE support for web application security. In
Twenty-Seventh Annual Computer Security
Applications Conference, ACSAC 2011, Orlando, FL,
USA, 5-9 December 2011, pages 267–276, 2011.

APPENDIX
A Participants

Age
Youngest, Oldest 20, 60
Prefer not to answer 3
Mean years (SD) 34.9 (8.1)

Sex

Male 49
Female 1
Other 1
Prefer not to answer 2

Recruitment
GitHub 44
Other 9

Experience
Mean development years (SD) 15.8 (8.2)
Mean Python years (SD) 8.44 (4.7)
Prefer not to answer 3

Occupation

Pro 48
Student 3
Both 1
Prefer not to answer 1

Demographic Invited Valid

Hireable 20.7% 13.0%
Company listed 41.4% 30.4%
URL to Blog 49.4% 47.8%
Biography added 19.1% 21.7%
Location provided 63.9% 65.2%

Public gists (median) 2.0 6.0
Public repositories (median) 25.0 30.0
Following (users, median) 3.0 4.0
Followers (users, median) 14.0 13.0
GitHub profile creation (days ago, median) 2431.0 2589.0
GitHub profile last update (days ago, median) 30.0 30.0

Table 7: GitHub-related demographics for invited users and
valid GitHub participants.

278 Fourteenth Symposium on Usable Privacy and Security USENIX Association

Error Our Study Acar et al.

No Encryption 0 (0.00%) 0 (0.00%)
Weak Algorithm 10 (35.71%) 17 (41.46%)
Weak Mode 9 (32.14%) 23 (56.10%)
Static IV 11 (39.29%) 29 (70.73%)

Participants 53 (100%) 41 (100%)

Table 10: Common errors in the encryption task of our par-
ticipants compared to PyCrypto library users from Acar
et al. [1].

B Regression Model

Factor O.R. C.I. p-value

Warning displayed 4.70 [0.04, 492.14] 0.515
Storage Task 0.13 [0.01, 1.25] 0.078

Development experience 1.11 [0.88, 1.39] 0.378

Table 8: Results of the final logistic regression model exam-
ining whether displayed warnings improve task security in
cases where a warning would have been triggered. Odds ra-
tio (O.R.) indicates relative likelihood of a task being secure.
Some trends are observable but not results are statistically
significant. See Table 2 for further details.

C Replication

Error Our Study Acar et al.

Key In Plain 1 (3.57%) 4 (9.76%)
Weak Cipher 9 (32.14%) 11 (26.83%)
Weak Mode 7 (25.00%) 14 (34.15%)
Static IV 9 (32.14%) 3 (7.31%)

No KDF 16 (57.14%) 15 (36.59%)
Custom KDF 16 (57.15%) 11 (26.83%)
KDF Salt 1 (3.57%) 1 (2.44%)
KDF Algorithm 3 (10.71%) 1 (2.44%)
KDF Iterations 1 (3.57%) 2 (4.88%)

Participants 53 (100%) 41 (100%)

Table 9: Common errors in the key file task of our partic-
ipants compared to PyCrypto library users from Acar et
al. [1].

D Exit Survey Questions
D.1 Task-specific questions: Asked about each

task
Please rate your agreement to the following statements:

I think I solved this task correctly.
• strongly agree

• agree

• neutral

• disagree

• strongly disagree

• I don’t know

I think I solved this task securely.
• strongly agree

• agree

• neutral

• disagree

• strongly disagree

• I don’t know

Did you use the PyCrypto API documentation to solve
this task?
• Yes

• No

If Yes: Please rate your agreement to the following statements:

The documentation was helpful in solving this task.
• strongly agree

• agree

• neutral

• disagree

• strongly disagree

• I don’t know

Which parts of the documentation did you use?

Did you see any security warnings while working on
this task?
• Yes

• No

If Yes: Please rate your agreement to the following statements:

The security warnings displayed in the console helped
to solve this task.
• strongly agree

• agree

• neutral

• disagree

• strongly disagree

• I don’t know

Please explain why the security warnings were helpful
or rather unhelpful.
• freetext answer

D.2 General questions about previous experi-
ence

Have you used the PyCrypto library before? For ex-
ample, maybe you worked on a project that used Py-
Crypto, but someone else wrote that portion of the code.
• I have used PyCrypto before

• I have seen PyCrypto used but have not used it myself

• No, neither

• I don’t know

Have you used or seen code for tasks similar to the
tasks given in the study before? For example, maybe
you worked on a project that included a similar task,
but someone else wrote that portion of the code.
• I have written similar code

• I have seen similar code but have not written it myself

• No, neither

• I don’t know

USENIX Association Fourteenth Symposium on Usable Privacy and Security 279

D.3 Usability perception
Please rate your agreement to the following questions on a scale
from ‘strongly agree’ to ‘strongly disagree.’ (strongly agree; agree;
neutral; disagree; strongly disagree; does not apply)

• I had to understand how most of the assigned library works
in order to complete the tasks.

• It would be easy and require only small changes to change
parameters or configuration later without breaking my code.

• After doing these tasks, I think I have a good understanding
of the assigned library overall.

• I only had to read a little of the documentation for the
assigned library to understand the concepts that I needed
for these tasks.

• The names of classes and methods in the assigned library
corresponded well to the functions they provided.

• It was straightforward and easy to implement the given tasks
using the assigned library.

• When I accessed the assigned library documentation, it was
easy to find useful help.

• In the documentation, I found helpful explanations

• In the documentation, I found helpful code examples.

• When I made a mistake, I got a meaningful error mes-
sage/exception.

• Using the information from the error message/exception, it
was easy to fix my mistake.

D.4 Message design assessment
Please rate your agreement to the following statements concerning
this console warning:

[Example security advice figure]

How helpful would you rate... (not helpful at all; somewhat un-
helpful; neutral; somewhat helpful; very helpful; I don’t know)

• ...the risk explanation?

• ...the recommendation for secure action?

• ...the given code example?

• ...the described option for insecure action?

• ...the given background information?

• ...the structure of this security advice?

• ...the amount of information in the message?

• ...the appearance of this kind of messages when using the
PyCrypto Library?

What aspects of the warning could be improved, in
your opinion?
• free text

D.5 Development Environment
Please tell us some details about your usual Python software de-
velopment tool chain.

Which console do you use?
• free text

Which text editor do you use?
• free text

What IDE do you use?
• free text

Do you use other tools for software development?
• free text

D.6 Demographic Questions
What type(s) of software do you develop?
• Web Applications

• Mobile Applications

• Desktop Applications

• Embedded Applications

• Enterprise Applications

• Other:

How many years of development experience do you
have?
• Number field 0-100

• Prefer not to answer

How many years have you been programming in Python?
• Number field 0-100

• Prefer not to answer

What is your current occupation?
• Freelance developer

• Industrial developer

• Industrial researcher

• Academic researcher

• Graduate student

• Undergraduate student

• Prefer not to answer

• Other:

What is your gender?
• Female

• Male

• Prefer not to answer

• Other:

What country do you live in?
• Please choose. . . (Dropdown)

How old are you?
• Free text for number of years

• Prefer not to answer

280 Fourteenth Symposium on Usable Privacy and Security USENIX Association

	Introduction
	Related Work
	API Level Advantages
	Security Advice Design
	Design Decisions

	Implementation
	How our Patch works
	Covered API Calls
	Not Implemented

	Developer Study
	Study Design
	Recruitment and Framing
	Experiment Infrastructure
	Task Design
	Exit Survey
	Evaluating Solutions

	Data Analysis
	Results
	Participants
	Dropouts
	Results for Functionality
	Results for Security
	Detailed Task Analysis
	Replication Results

	Limitations
	Discussion
	Conclusion
	Acknowledgments
	References
	Participants
	Regression Model
	Replication
	Exit Survey Questions
	Task-specific questions: Asked about each task
	General questions about previous experience
	Usability perception
	Message design assessment
	Development Environment
	Demographic Questions

