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Abstract
Modern software development still struggles with memory
safety issues as a significant source of security bugs. The
Rust programming language addresses memory safety and
provides further security features. However, Rust offers devel-
opers the ability to opt out of some of these guarantees using
unsafe Rust. Previous work found that the source of many
security vulnerabilities is unsafe Rust.

In this paper, we are the first to see behind the curtain and
investigate developers’ motivations for, experiences with, and
risk assessment of using unsafe Rust in depth. Therefore, we
conducted 26 semi-structured interviews with experienced
Rust developers. We find that developers aim to use unsafe
Rust sparingly and with caution. However, we also identify
common misconceptions and tooling fatigue that can lead
to security issues, find that security policies for using unsafe
Rust are widely missing and that participants underestimate
the security risks of using unsafe Rust.

We conclude our work by discussing the findings and rec-
ommendations for making the future use of unsafe Rust more
secure.

1 Introduction

Security issues are prevalent in software products and more
vulnerabilities are reported every year. In 2021, the CVE
Dictionary reported 20,161 newly published CVEs, of which
4,074 were classified between high and critical severity by
NIST. In the following year, 25,059 new CVEs were filed [1],
[2].

A root cause for this alarming number of bugs is the de-
ployment of low-level or system-oriented programming lan-
guages that usually require developers to take care of the
entire memory management and, thus, impose the burden of
not introducing security vulnerabilities into the systems onto
them. As regularly reported in the news, negligent actions can
easily lead to severe security incidents [3]–[6].

To counter this trend and aid developers in secure cod-
ing, the Rust programming language emerged, constructed

to support both secure programming and good performance.
Rust provides concurrency and memory safety while simul-
taneously being designed to be fast and efficient. The lan-
guage achieves this through a so-called ownership system and
the borrow checker, finding many security issues at compile
time [7]. Therefore, Rust offers security guarantees which are
not bypassable in normal “safe” Rust code [8]–[10].

However, there are use cases for which safe Rust code is
insufficient. Such use cases, for example, require raw mem-
ory access and are not supported by regular Rust code. To
support these use cases, developers can use the so-called “un-
safe” Rust feature. Unsafe Rust provides developers with an
extended feature set, such as dereferencing raw pointers and
calling “unsafe” functions. In return, developers lose safety
guarantees, including memory safety, and must implement
safety measures themselves. It is therefore generally recom-
mended to use unsafe Rust sparingly and with great care and
attention. However, there is little research on how developers
approach writing, reviewing, and testing unsafe code frag-
ments and whether they use security policies or guidance.
Contributions. While previous work explored the use of un-
safe Rust code in open source projects [11]–[13], our work
aims to investigate decision-making and development pro-
cesses for unsafe Rust. Therefore, we conducted 26 semi-
structured interviews with experienced Rust developers who
had used Rust’s unsafe feature. To the best of our knowledge,
we are the first to conduct qualitative interviews with Rust
developers with a focus on better understanding the use and
motivation of unsafe code. We provide insights into why and
how developers use unsafe code in Rust. We identify po-
tentially dangerous misconceptions around unsafe code and
explore developers experiences with unsafe code-specific se-
curity incidents. In the course of our work, we contribute to
the security community by addressing the following research
questions:
RQ1. What are common practices of deciding for and im-
plementing software using unsafe Rust? Deciding for and
implementing unsafe Rust is critical with potentially severe
security consequences. We explore decision processes for



using unsafe code and how developers implement it. More-
over, we investigate security policies and resources for writing
unsafe code which developers follow.
RQ2. How do developers assess unsafe Rust’s features, limi-
tations, and security risks? To make informed decisions re-
garding the use of unsafe code, developers need to properly
assess its features, benefits, limitations, and risks. Therefore,
we contribute to understanding developers’ comprehension
of the concept of unsafe Rust and uncover potential miscon-
ceptions that might lead to insecurities.
RQ3. What security code reviewing and testing practices
around unsafe Rust are used by developers? Proper quality
control and security checks are crucial for developers to keep
vulnerabilities out of a code base. Therefore, we explore un-
safe code specific code reviewing and testing practices.
RQ4. How do developers experience security incidents as
the result of incorrect use of unsafe Rust? Using unsafe code
incorrectly might lead to serious security incidents. Therefore,
we explore developer experiences with such incidents.
Availability. To support the replication of our work and help
other researchers build upon it, we provide a replication pack-
age (cf. Availability 7).

2 Background

Below, we provide background information for both safe and
unsafe Rust and their core principles and safety features.
Rust and Core Safety Features. Rust is a multi-paradigm
programming language. It includes high-level programming
concepts and provides good runtime performance with zero-
cost abstractions since memory management checks happen
during compilation rather than runtime. Rust also provides
memory safety using “ownership” and “borrowing” concepts
following three core ideas [14]:

• Each value has an owner.
• Each value can only have one owner at a time.
• A value will be dropped if the owner goes out of scope –

its memory is automatically returned.

All rules are enforced by the “borrow checker” in the compiler.
This allows static analysis to reject code that would lead to
uncertainties about ownership and that could, thus, potentially
lead to memory errors. Rust also eliminates the need for a
conventional garbage collector [13]. However, the ownership
concept has the downside of a steeper learning curve when
starting to work with Rust compared to other programming
languages like C or C++ [15].
Unsafe Rust. To work around some of the limitations of safe
Rust, e.g., integrating code written in another language or
working with memory directly, Rust provides unsafe, a super-
set of safe Rust. Unsafe Rust code is written using the unsafe
keyword. Unsafe lifts certain safety guarantees and provides
ways to perform operations that cannot be covered by a static

analysis step during compilation or through runtime checks
and would therefore be rejected by the safe Rust compiler.
Unsafe Rust grants the developer an additional set of capabil-
ities that can be used only in those unsafe code regions and
consists of five major features called “unsafe superpowers”,
including [16]:

• Dereferencing raw pointers
• Calling unsafe functions and methods
• Implementing unsafe traits
• Accessing or modifying mutable static variables
• Accessing fields of unions

Rust’s “Foreign Function Interface” (FFI) allows calling code
written in other languages. It must be called using unsafe
code since the compiler cannot provide safety guarantees for
external languages. Unsafe blocks still provide certain safety
features, e.g., the borrow checker is still enabled. Nevertheless,
with this feature set, developers are given great responsibil-
ity upon using unsafe, as they could inadvertently introduce
critical vulnerabilities into their code.
Ecosystem and Tooling of Rust. As we asked developers
for their interaction with tools and the Rust ecosystem, we
give a brief background around emerging tools and topics.

Rust includes the dependency manager and build tool
“cargo” to compile external packages called “crates” and
to add them to a project. At the time of writing in 2022,
“crates.io”, the central repository, provides more than 77,400
external crates with a plethora of extensions and abstractions.

To facilitate the debugging of safe Rust and especially un-
safe blocks, developers may rely on multiple tools provided
by the Rust ecosystem. This includes “MIRI”, an additional
interpreter that triggers on various undefined behavior errors,
including out-of-bounds memory accesses, invalid uses of
uninitialized data, and other memory-related errors by testing
all resulting binaries [17]. In addition, there is also an imple-
mentation of the tool “Valgrind” for Rust that can also detect
many memory management and threading errors and be used
to profile programs in detail [18].

Furthermore, the Rust compiler provides several linting
mechanisms out of the box. In general, a linter can be used
to detect programming or stylistic errors, which in turn can
result in better code. Rust uses a system of linting levels be-
tween allow and forbid, with the lint unsafe_code defaulting
to allow, in so far generally allowing the usage of unsafe. A
developer could thus also prevent the use of unsafe code com-
pletely by including the lint #![forbid(unsafe_code) at
the top of their code base.
Moreover, the additional linter “Clippy” provides several
more lints for safe and unsafe Rust. As an example, there are
lints such as undocumented_unsafe_blocks which alerts a
developer that an unsafe block has not yet been documented.
Clippy is also available through the standard Rust crate repos-
itory [19].

Cargo offers some further extensions through crates for
automatic verification of project dependencies. Among them



is cargo-audit of the Rust Secure Code working group,
which builds a crate dependency tree and checks it against the
RustSec Advisory Database. This can be used to determine
whether known vulnerabilities occur in dependencies [20]. In
addition, there is cargo-deny, which allows fine tuning of
dependencies, e.g. by displaying whether license agreements
of dependencies meet expectations and requirements [21].

3 Related Work

We discuss related work in two key areas: research on the
security of (unsafe) Rust and research on the usability of Rust.

Rust Security. We are among a number of researchers inves-
tigating the security of Rust and the unsafe keyword. First,
the Rust Belt projects aims to verify and prove Rust’s safety
claims, placing them on a formally secure footing [9], [10],
[22]. Moreover, different tooling and verification approaches
were designed to validate Rust programs and identify bugs
such as memory safety issues [23]–[29]. Regarding tool sup-
port for transitioning code to Rust, Emre et al. explored the
problems of translating C code into Rust via the “C2Rust”
tool and listed causes and categories for resulting unsafe code
fragments [30]. Building on that, Ling et al. presented the
tool “CRustS” with several improvements [31].

Other researchers studied the isolation of unsafe Rust.
While Lamowski et al. isolated Rust from unsafe C li-
braries by executing unsafe functions in separated child pro-
cesses [32], Almohri et al. presented a system to isolate Rust
memory from unsafe Rust code by utilizing the Linux ker-
nel [33]. An approach pursued by Liu et al. was to create
different heap regions for safe and unsafe memory [34] and
Rivera et al. introduced a technique for isolating the heap
of safe Rust from languages included via FFI [35]. More-
over, several works have analyzed unsafe code. Evans et al.
examined Rust code gathered from crates.io to investigate
the occurrence, propagation, and usage of unsafe code [12].
Astrauskas et al. also analyzed code from crates.io. They
found that 23.9% of all crates used unsafe code, with a small
unsafe-to-safe code ratio [13]. Qin et al. studied the usage
of unsafe Rust code in different environments and extracted
the main reasons for the usage [11]. Xu et al. investigated
Rust-related CVEs with memory-safety issues and examined
their consequence and patterns of occurrence [8].
The presented research differs from ours in that the “as-is”
state of code was studied. By conducting interviews with
developers, we aim to gain insights into Rust developers’
mindsets and decision-making processes regarding unsafe
code. Using our research approach, we enrich previous re-
search with qualitative insights that cannot be derived from
unsafe code fragments.

Rust Usability. Rust usability has been studied in previous
works, often with a focus on the adoption process. Zeng et
al. examined difficulties when adopting Rust by analyzing

several online platforms [36]. Zhu et al. investigated prob-
lems in Rust programming and learning by inspecting Stack
Overflow questions and conducting a survey [37]. With Rust
as an example, Abtahi et al. examined which resources de-
velopers find most helpful in learning a new language [38].
Various tooling options were constructed to aid developers
in learning Rust [39]–[41]. Mindermann et al. identified the
most important Rust crypto APIs and analyzed them regarding
usability [42].

Through interviewing and surveying developers, Fulton et
al. gained further insight into the adoption process of the Rust
language. They identified a steep learning curve when switch-
ing to Rust and concerns regarding the novelty of the lan-
guage (e.g., whether the ecosystem is already mature enough).
However, most participants rated the use of Rust positively.
Regarding unsafe code, most study participants claimed to
have used this feature. The authors found that companies
mostly seemed to have no or only vague guidelines on how
to review unsafe code [15].

Since using unsafe code in Rust is such a safety-critical
component, this is where our work ties in. We conduct inter-
views mainly concentrating on this feature and questioning
developers’ mindset and risk awareness to study the effects
insufficient security policies might have.

4 Methodology

Below we describe the structure and procedure of the in-
terview study, the data analysis and interview coding, our
recruitment procedure, as well as ethical considerations and
limitations of our work.

4.1 Interview Guide
We decided for interviews, since we were interested in in-
depth insights into the experiences and motivation for using
unsafe Rust. We based our interview questions on previous
work exploring Rust and its unsafe keyword [8], [11]–[13],
[15] and phrased them with our research questions in mind.
The interview pilots with three participants served to assure
the quality and applicability of our interview guide. During
the pilots, we tested and improved the wording and order of
the interview questions.

We conducted all interviews online to reach a wider and
more diverse audience. Semi-structured interviews allowed
us to ask open-ended questions and explore the field without
limiting response options, as well as ask follow-up questions
if needed. We created the interview guide in German and En-
glish and updated both guides synchronously in case of minor
changes or clarifications were added after an interview. Each
interview was conducted by one researcher, with a shadow
interviewer as a backup. Overall, three different researchers
were involved in the interviewing process. All interviewers
were knowledgeable about unsafe Rust and interview studies



Intro
Introduction to the interview and obtaining verbal consent.

1. Background and Demographics
Establish participant’s background and their (professional)
experience with (unsafe) Rust.

2. Unsafe Code
Explore mental models and comprehension of unsafe Rust,
as well as experiences with using unsafe.

3. Testing and Tooling
Identify participants’ testing practices, supporting tools, and
reliance on as well as vetting of third party codebases.

4. Security Policies and Guidelines
Identify guidelines and resources available to contributors,
the decision process of (not) writing unsafe, as well as
prevalence and themes of existing security policies related
to unsafe Rust.

5. Code Reviewing
Establish code review practices and peculiarities of review-
ing unsafe Rust and inquire about found vulnerabilities.

6. Incidents and Threat Model Using Unsafe Code
Explore possible incidents of unsafe code misuse and their
consequences.

7. Conclusion
Identify additional measures that participants might take.
Ask for suggestions w.r.t. producing more secure unsafe
code.

Outro
Debrief and collect feedback for the interview.

Figure 1: Procedure and structure of our interview guide,
consisting of seven blocks surrounding the comprehension,
usage, and handling of unsafe Rust.

with developers. The interview consisted of seven thematic
blocks that primarily focused on unsafe Rust and secure Rust
programming. Figure 1 illustrates the interview structure. We
asked all participants to fill out a pre-survey to collect their
demographics and consent. The interview guide and the pre-
survey can be found in the replication package.

4.2 Data Analysis and Coding
We recorded and transcribed all interviews using a GDPR-
compliant third-party provider. We reviewed all transcripts
for correctness and completeness. We coded all interviews us-
ing an iterative, open coding approach [43]–[45] looking for
recurring themes and established an initial codebook based on
the interview guide and interview impressions. In an iterative
approach, all researchers applied the codebook to all inter-
views until no further codes or themes emerged [46], [47].
The same researchers who conducted the interviews did the
coding. We resolved conflicts by consensus or by adding new
(sub)codes after each iteration. This coding approach does

not require the reporting of an inter-coder agreement since
all conflicts were resolved when they emerged, resulting in
a hypothetical final agreement of 100%. This approach fol-
lows best practices in our field [48]–[50]. Our final codebook
contained 151 unique codes. We assigned each interview 79
codes on average. Using affinity diagramming [51], we ex-
tracted the most relevant information from the codebook and
condensed them into results.

4.3 Recruitment
To gain in-depth insights into the usage, perception, reviewing
practices, and testing of unsafe Rust, we recruited experienced
Rust developers who had used unsafe Rust before. We pi-
loted the interview with one developer from our professional
network and two freelancers from Upwork [52]. We chose
Upwork as our initial recruitment option as it offers access to
many freelancers and has been successfully used in previous
studies [53], [54]. We made only minor changes during the
piloting. Hence, we included the three pilot interviews in our
final data set. For participant diversity and to attract suffi-
ciently many participants, we recruited further participants
from GitHub. We selected projects from the curated “Awe-
some Rust” [55] list and manually identified GitHub users
who had committed at least one unsafe code fragment to one
of the projects. From those, we randomly invited 250 devel-
opers who provided a mail address in their public GitHub
profile 1. We recruited further unsafe Rust experienced par-
ticipants, who were referred to us by peers or who contacted
us after visiting our study website. Overall, we could recruit
two participants from Upwork, 21 participants from GitHub,
and three participants via peers. We conducted all 26 inter-
views between October 2021 and August 2022. We offered
all participants a compensation of $80 via bank transfer or
voucher. As common for qualitative interview studies, we
aimed for participant diversity and not generalizability. In our
study, we aimed for diversity in terms of Rust experience and
professional background.

4.4 Ethical Considerations and Data Protec-
tion

This work was approved by our Ethical Review Board (ERB).
Additionally, we followed the ethical principles of the Menlo
report for research involving information and communications
technologies [56]. For the data collection and processing, as
well as the used transcription service, we adhered to the Euro-
pean General Data Protection Regulation (GDPR). We stored
the data in our secure cloud, to which only the researcher asso-
ciated with the project had access. We removed all personally
identifiable information from the transcripts. All participants

1According to an update of GitHub’s ToS, recruiting participants for
research studies is no longer permitted and should be avoided for future
research, as determined by the USENIX Security Research Ethics Committee.



filled out a consent form before the interviews. The consent
form informed them of the content and procedure of the inter-
view study and provided further contact information. At the
beginning of each interview, we explained that the interview
was recorded and how we stored and processed participant
data. We obtained verbal consent from each participant for
this procedure.

Disclaimer: Recruiting participants on GitHub was a com-
mon recruitment option for developers in previous work [49],
[57]–[59]. Since a change in GitHub’s ’Acceptable Use Poli-
cies’ [60], this type of recruitment is prohibited. Therefore, we
discourage this recruiting method in future studies. However,
we carefully filtered for potential participants and did not send
mass invite emails. We manually invited small batches of de-
velopers who had committed unsafe Rust code and added their
contact email addresses to their public profiles. We stopped
inviting developers once we reached saturation. Additionally,
we refrained from contacting developers who did not want to
be contacted, contacted developers only once, and offered to
add them to an ignore list. We received no complaints from
any of the developers we contacted. Therefore, we consider
the damage caused by the recruitment justifiable.

4.5 Limitations

Our work has several limitations inherent for this type of
interview study and should be interpreted in context.

Participants self-reported their experiences. They might
have forgotten, or omitted information, e.g., exhibiting social-
desirability bias. This could lead to over- or understating
of individual experiences. As a countermeasure, we aimed
to phrase sensitive inquiries accordingly. Moreover, before
each interview, we explained that we were only interested
in experiences and opinions and did not judge any answers.
We acknowledge that some interview questions were closed-
ended or could have influenced the participants answers.

We invited most participants by sending out emails to Rust
developers that had at least one GitHub commit containing un-
safe code or reached them via snowball sampling. We sampled
randomly from all identified developers and did not explicitly
account for developers from varying project sizes or applica-
tion areas. Our email invites may have lead to a self-selection
bias: Developers with high interest in the topic might have
been more likely to participate or more motivated to talk about
their encounters with unsafe Rust than other Rust developers.
Our sample is therefore regarded as a convenience sample,
with a greater part of the participants residing in Europe, and
is not generalizable to the Rust population as a whole. Inter-
views with participants from other regions in the world might
haven given different answers.

In particular, we only interviewed participants with unsafe
Rust experience and cannot provide insights for developers
who did not use unsafe code.

However, we are confident that we interviewed a diverse

set of developers and thus are able to provide a rich set of
valuable insights for the security research community.

5 Results

Below, we report results from 26 semi-structured interviews
with experienced Rust developers regarding their use, under-
standing, reviewing practices, and testing of Rust unsafe code.
In order to make our results more tangible, we report counts
from our codebook. However, as our work is solely of qualita-
tive nature, these counts should not be interpreted as quantita-
tive results, but help to give weight to the different topics. The
complete codebook is available in our replication package.

5.1 Participant Demographics

We begin with reporting general demographic information
gathered from the pre-survey and in the interviews 2. Impor-
tant demographics are summarized in Table 1. The majority
of our participants identified as male (n=20), except for one
female, one non-binary, and one agender participant. The
age ranged from 18 to 46 years (median=28, mean=29.17).
Our participants came from 15 different countries. On aver-
age, an interview lasted 57 minutes (median: 58 minutes).
11 participants had used Rust for two to five years, while 12
participants had used Rust for more than five years. Apart
from Rust, nearly every participant reported a background
in C or C++. Second most popular was Python, followed by
Java and JavaScript. Three participants self-reported having
considerable security experience, 14 participants had some,
and six indicated that they had little security experience.

During the interviews, 17 participants reported using Rust
for the maintenance of or the contribution to open source
projects, with some participants mentioning significant con-
tributions to the Rust ecosystem and two participants being
part of the Rust Core Team. Using Rust in their company
has been stated by eleven participants, three were using Rust
for freelance work, while four participants used Rust for aca-
demic purposes, and three participants indicated they use Rust
only for private projects. Further, seven participants indicated
that they perceived the security sensitivity of their project as
relatively low. Participants often indicated working with Rust
in small teams or environments. Eight participants stated to
work in medium to large teams or environments with more
than 40 developers.

Regarding contacts that could offer security advice, twelve
participants mentioned regularly reaching out to colleagues
or personal contacts for security-related Rust questions, while
eleven participants stated that they did not need security ex-
pert advice since they were experienced in writing secure
Rust code or were more likely to be the ones asked for advice

2We only collected pre-survey information after the piloting phase. Hence,
some demographic information is missing for the first three participants.



ID Language Length Country Rust Exp. Security Exp. Usage Areas1

p01 English 1:09h DE > 5 years Considerable A, P
p02 English 0:48h NO 2–5 years - C, F
p03 English 0:34h NO > 5 years Little C, O, P, F
p04 English 1:03h RU > 5 years Considerable O
p05 English 0:53h US 2–5 years Some C, O, P
p06 English 0:34h LT 2–5 years Little P
p07 English 1:18h HR > 5 years Little C, O
p08 English 1:00h DK 2–5 years Some O
p09 German 1:01h DE > 5 years Little O, P
p10 English 0:47h BR 2–5 years Some O, P
p11 English 1:20h NL 2–5 years Considerable C, O
p12 English 1:13h GB > 5 years Some C, O
p13 English 0:47h GB 2–5 years Some C, O
p14 English 0:45h NL 2–5 years Some F
p15 English 1:07h PL > 5 years Some O, P
p16 English 0:50h US > 5 years Considerable C
p17 English 1:03h IT > 5 years Little A, O, P
p18 English 0:56h CN 2–5 years Some A
p19 German 0:41h DE 2–5 years Some C, O
p20 English 0:50h CA > 5 years Some P
p21 English 0:44h IN 2–5 years Some O, P
p22 German 1:04h DE > 5 years Little O
p23 German 1:13h DE > 5 years Some P
p24 English 0:42h US 2–5 years Some A, P
p25 English 1:08h DE > 5 years Little C, O
p26 English 1:05h NL > 5 years Some C, O

1 C: Company, F: Freelancing, A: Academia, P: Private Work, O: Open Source

Table 1: Overview of the 26 interviews and associated partici-
pant information.

on Rust security themselves. Ten participants reported to not
have dedicated Rust security experts in their company or pro-
fessional network. However, 15 participants used platforms
such as Reddit or Discord to ask for security advice, and six
participants specifically mentioned Stack Overflow.

5.2 Unsafe Rust Application Areas

We asked participants about application areas and reasons for
using unsafe Rust. While this topic was already examined in
previous research by analyzing unsafe code fragments [11]–
[13], we asked about the use cases to better relate and contex-
tualize later answers. Moreover, we are the first to confirm
previous research with developers directly.

Asked about possible use cases for unsafe, our participants
mentioned a multitude of application areas. As far as “un-
safe superpowers” were concerned, pointer operations and
raw memory accesses were elaborated by 23 participants.
Further, eight participants mentioned the calling of unsafe
functions inside an unsafe block. In contrast, implementing
unsafe traits, mutating a global static, or working with unions
were mentioned less often. Apart from the fundamental un-
safe operations, another important purpose our participants
reported was Rust’s FFI, often associated with OS or hard-
ware interfacing. Next in line, 13 participants reported data
structures like doubly linked lists, and eleven participants
mentioned the usage of unsafe code for concurrency reasons.
Further use cases our participants mentioned were more di-
verse, such as in-place or intrinsic mutation, lazy loading, and
working with memory or in-line assembly.

These unsafe applications reflect our participants’ actual

deployment of unsafe code, particularly concerning the FFI.
All but one participant used unsafe code with the FFI, with
some trying to limit their unsafe code use exclusively towards
it. Most participants primarily mentioned the inevitable use
of FFI and performance improvements as reasons for using
unsafe code. However, bringing up performance, seven partic-
ipants stated they would not use unsafe code for this reason
and four participants pointed out that the performance gain
had to be significant or necessary. Participants also indicated
that they had used unsafe code before since it had saved them
effort or allowed them to write code more efficiently.

5.3 Common Practices of Deciding for and Im-
plementing Software Using Unsafe Rust

To answer RQ1, we asked for motivation and decision pro-
cesses, including policies for using unsafe, and programming
practices.

5.3.1 Motivation and Decisions for (not) Using Unsafe

Over the course of the interviews, 18 participants explicitly
stated that they tried to avoid unsafe code or only used unsafe
if really necessary, e.g., there was no alternative to using the
FFI. Further, five participants emphasized that they tried not
to use unsafe code in critical parts, like network stacks or
work for company customers. As one participant stated: “I
wouldn’t want my unsafe code to run my pacemaker.” (p07)
Eleven participants mentioned that they preferred to write
safe code, even if the code was more complex or less perfor-
mant than the unsafe counterpart. However, six participants
declared that sometimes it was justified to write purely unsafe
functions. Their examples included lower-level code, such as
architecture-specific operations or calls and direct access to
registers or memory. Additionally, six participants would con-
sider using unsafe if the code performance was (noticeably)
better:

“[T]hat’s a pretty hot piece of code, so it’s fairly
important that, yes, the bounds checks probably
would not hurt that much, but at the same time we
just don’t want to bother risking [using safe code].”
- p05

On the contrary, nine participants explained that they were
satisfied with the optimization done by the compiler and that
the optimization was sometimes even better or equal to unsafe
code. In this vein, some participants indicated that they later
rewrote unsafe code in their project or tested safe alternatives
alongside the unsafe code:

“We started that project with more unsafe code in it
than we have right now, even though we’ve gained
features because that developer has slowly learned
to trust that there is usually a safe way to do things,
and that’s usually the better way to do things.” -
p25



In general, the use of unsafe code was mostly based on
common sense and trust in the developers’ capabilities to
decide if unsafe code should be used or not, as illustrated by
one participant:

“Typically, in a project when the topic of unsafe code
comes up, it is because it is clear that something
should be solved with unsafe code.” - p04

Four participants mentioned that unsafe code had to pass their
internal code review process. Additionally, three participants
stated that lead maintainers or senior developers made final
judgments for unsafe code fragments. Four participants dis-
cussed the use of unsafe code in their team and evaluated
the pros, cons, and alternatives. However, one interviewee
brought up team decisions as a potential for conflicts:

“Some members of our team were very adamant that
we should not use unsafe code here [. . .]. There
were periods in time when the other team, the front-
end team, puts blame onto us that their code fails be-
cause we did something wrong in our unsafe code.”
- p12

Despite this potential for conflicts, only very few par-
ticipants worked on projects that had explicit security
policies for (not) writing unsafe code. Two participants
worked on crates that used #![forbid(unsafe_code)] or
#[deny(unsafe_code)] inside their modules. Both are lints
that produce errors if the unsafe keyword is used. Moreover,
three participants used mandatory security comments for un-
safe code or mentioned explicit API design policies, which
included locking the unsafe code behind a safe interface.

We categorized answers into different team and project
sizes, but found no influence on the presence or absence of
formal unsafe policies. However, discussing the use of unsafe
in a team was only done in smaller projects. Though also
reported by smaller projects, more than half of the medium
to large projects reported trust in the common sense when
writing unsafe. While we consider the differences in deciding
for unsafe between different team and project sizes to be rather
limited, four participants working in smaller projects hold
the sentiment that they would expect more formal policies
or formalities for larger projects. Our findings are in line
with research comparing different company sizes. They often
found only small or no differences in security practices [48],
[61]–[63].

5.3.2 Writing Unsafe Rust

Asked about their own writing and thought process around
unsafe code, 16 participants indicated that they tried to iden-
tify and enforce all invariants and contracts. This includes
the preservation of all properties that must be upheld at all
times, as well as pre- and post-conditions. A few partici-
pants mentioned exceptions to that rule, like pure FFI calls
or code, which was perceived as trivial. One participant used

the unsafe_block_in_unsafe_fn lint, so that specific un-
safe operations within an unsafe function still require unsafe
blocks.

Isolation of unsafe code from their safe code has been
described by 15 participants. Some specified it as explicitly
outsourcing unsafe code to other modules or crates. Also, 14
participants stated that they tried to make the unsafe part as
small as possible and confine it to small code blocks. How-
ever, one participant mentioned that, while still trying to keep
the unsafe block small, they rather put everything that needs
to be checked inside the unsafe block. Safe interfacing and
safe APIs were mentioned by 22 participants, providing the
possibility for the end user, or at higher levels of the project,
to only interact with safe code. If no viable safe-interface
solution existed, two participants explained that they tried to
wrap their unsafe code inside other unsafe code, creating a
facade that provides an easier-to-use interface. Four partici-
pants mentioned that, for performance reasons, they provided
a safe as well as an unsafe function to the end user.

Reading the documentation thoroughly was mentioned by
nine participants, also comprising documentation of code they
wanted to include via the FFI, to convince themselves that
they had upheld all invariants. Writing good documentation
was also important. Writing safety comments were mentioned
by 16 participants, exactly stating why the block is safe to
use and which invariants have to be upheld. One participant
used Clippy lints to remind themselves of these comments.
Another participant even indicated that they wrote documen-
tation before starting to actually code, to have a reference
for orientation. Contrary, one participant stated that they only
wrote little documentation and that it would be hard to con-
vince other developers about the correctness of their unsafe
code. Yet another participant indicated that they might forget
to write safety comments, as this would be something they
left for the last. Again, if code fragments were assessed to
be trivial, some participants refrained from writing detailed
comments or wrote none at all.

In terms of encapsulating unsafe use cases, 13 participants
mentioned that they used crates that already encapsulate their
use cases. By this, they do not have to write unsafe code
themselves. If they still had to write unsafe, most participants
wrote it from scratch and did not have any use cases where
they reused previously written or third-party code. Six par-
ticipants mentioned unsafe code fragments that they reused
across different projects or wrote a macro that contained un-
safe code. One person stated that they had copied code from
the documentation.

We also found a few examples where unsafe code was
used carelessly. Three participants knew that their unsafe
code could lead to undefined behavior, e.g., one participant
explained that their safe code layered above the unsafe code
was not yet safe to use:

“There are multiple points where you could, in safe
code, cause undefined behavior, and I’ve just basi-



cally chosen to ignore it because I know I will solve
that problem.” - p05

Three participants stated that they sometimes wrote unsafe
code without diligent care. Two reasons were projects with
too many lines of unsafe code or projects that were perceived
as less important or security-critical.

Considering the confidence in the written unsafe code, the
responses were rather diverse. Twelve participants felt confi-
dent in their code or did not worry too much about its safety
and security, e.g., because they stated to have an extensive
test suite. The remaining participants were not confident or
at least undecided. Reasons were unsafe code use cases that
they found more complicated to write, changing security re-
quirements, or lacking security experience:

“[B]ut then we have some new changes in Rust where
something is, for example, not technically allowed
[. . .]. That would mean that some of my unsafe code
that I’ve written in the past might now be marked
as wrong.” - p26

For information on writing unsafe code securely, many
participants referred to official documentation like crates’
API documentation or the standard library’s documentation.
Twelve participants mentioned the Rustonomicon. Some had
only consulted it once; others frequently used it as a reference
guide for the secure use of unsafe code. Some participants
relied on the Rust Book or blog posts: “Well, a lot of blogs
exist, but it’s scattered information specifically for embedded.”
(p03) Many participants stated that they mostly did not look
at guidelines, mainly as they drew from their experiences and
used resources only for learning, or they had started writing
Rust before elaborate guidelines even existed.

RQ1: Common practices of deciding for and implementing soft-
ware using unsafe Rust.

• Most participants tried to avoid unsafe
• Only a few participants reported special security policies to

write unsafe
• Developers trusted their common sense when using unsafe,

project-level recommendations were rare
• Participants reported a thoughtful process for writing un-

safe, including the use of safe interfaces, good documenta-
tion and safety comments, and small unsafe code fragments

• Unsafe was sometimes used without diligent care
• To avoid writing unsafe, participants frequently reported

using crates that encapsulate unsafe code
• The confidence in their code varied among participants

5.4 Assessment of Unsafe Features, Limita-
tions, and Related Security Risks

To explore RQ2 without intimidating participants, we asked
them how they would explain unsafe code to an unfamiliar de-
veloper and asked follow-up questions as needed. Participants
frequently compared writing unsafe code to programming in

C or C++. Further, 19 participants explained that using unsafe
code leaves the compiler unable to check all invariants and
pre- or post-conditions for the unsafe fragments. As a conse-
quence, developers have to do it themselves and be sure to
know what they are doing. Several participants described this
with statements similar to the one used in the official Rust
book [14]: “Trust me, I know what I’m doing.” One participant
described unsafe code as an area where one has fine-grained
control of the code’s functionality and does not depend on
compiler optimizations. Some participants compared unsafe
code to an escape hatch in Rust without any barriers left. Ten
participants had the misconception that inside unsafe Rust, all
or at least some compiler checks would be turned off, whereas
six participants explained that all rules which are enforced
in safe code also apply to unsafe code. Eleven participants
touched on or even stressed that unsafe Rust opens up some
new features to work around the limitations of safe Rust and
that unsafe code is a superset of safe Rust. Four participants
pointed out that the requirements for not creating undefined
behavior in unsafe code were stricter than in C++, as a tiny
violation of Rust’s ownership and borrowing model, concepts
not present in C++, can lead to immediate undefined behavior.

For their regular interaction with unsafe code, 13 partici-
pants regarded the unsafe keyword as a marker of sorts, an
area where critical bugs might occur and which they could
better call out or monitor more closely. In this context, par-
ticipants regularly mentioned that programmers were able to
be more pedantic in unsafe code and focus on those areas, as
they are more contained. The programmer can otherwise rely
on Rust’s guarantees for safe code. In contrast, three partici-
pants stated that unsafe code might become quite annoying,
e.g., if it was impossible to limit unsafe code to small code
fragments:

“Once you start running unsafe everywhere, it just
starts to become annoying. So then we just say,

‘Oh yes, this unsafe block count on the caller doing
it right.’ And this is not public-facing, this is all
internal.” - p05

Furthermore, 16 participants mentioned that unsafe code
could be scary or hard to write or they might have a nagging
feeling about it. The reasons were that it could be challenging
to write unsafe code correctly and to consider all soundness
issues or side effects. In this vein, one participant missed a
knowledge base with more detailed information on undefined
behavior of unsafe code:

“[T]here’s still a lot of things that nobody really
knows if what you’re doing is sound. Sometimes,
theoretically, it’s not sound, but in practice, nobody
has ever encountered an issue. So we do it anyway.”
- p25

Moreover, twelve participants explained that the difficulty
of unsafe code depended on the context and specific use case.



The FFI was the most frequently given example of easy-to-
write unsafe code, as mentioned by four participants. How-
ever, two participants regarded the correct usage of the FFI as
difficult once it involved memory management, e.g., between
different programming languages. Other reported challenges
were the correct use of pointers, lifetime inferences, the cre-
ation of custom data structures, and the length of an unsafe
block.

RQ2: Developer assessment of unsafe Rust’s features, limitations,
and security risks.

• Unsafe was often compared to writing code in C or C++
• Some participants had the misconception that unsafe Rust

turns off some/all compiler checks
• Unsafe Rust was perceived as code fragments, where devel-

opers have to pay close attention to safety and security
• Many participants perceived unsafe Rust as scary and error-

prone
• The assessment of unsafe strongly depended on the context

and complexity of a code block

5.5 Security Code Reviewing and Testing Prac-
tices for Unsafe Rust

To answer RQ3 we asked the developers about their unsafe
reviewing and tooling practices, the latter of which is strongly
related to the used tooling options. As relevant for supply
chain security, we also inquired about their management of
(unsafe) crates they depended on.

5.5.1 Unsafe Code Reviewing

Regarding code reviews, 18 participants mentioned that they
looked more thoroughly into unsafe code passages and
checked all conditions and invariants for safety and security.
They reported a wide range of security issues and bugs they
specifically looked for in unsafe code. Recurring themes were
the correct use of raw pointers and their referenced objects,
also in connection with the FFI, avoiding uninitialized mem-
ory, e.g., probing the use of the MaybeUninit function, and
preventing the occurrence of bugs due to a lax mutability use.
One participant mentioned being skeptical if unsafe code was
used arbitrarily:

“Normal code just doesn’t use unsafe. [. . .] And if
there was unsafe in there, I would take a closer look
at why and would question the usage.” - p22

Twelve participants emphasized checking that all invariants
are upheld and eight participants indicated paying special
attention to documentation, checking whether security com-
ments exist and if they are actually correct. Only one partici-
pant mentioned that security comments might not be neces-
sary to minimize the threshold of participation in their open
source project. Another participant working on an open source
project emphasized the importance to educate contributors

and point them to the documentation, especially since they
worked mostly with members from the open source commu-
nity. “It’s not like we can do anything or block them from
doing [pull requests].” (p13)

Eight participants mentioned they would suggest a safe
rewrite or rewrote the unsafe code to safe code themselves if
possible. One participant paid no special attention to unsafe
Rust:

“No. I understand you have to pay more attention
when you use unsafe Rust code, but in reality, we
actually don’t do that very well.” - p18

Twelve participants felt somewhat confident or confident
in their code reviews for unsafe Rust. However, most of them
realized that they might miss bugs during their code review.
One participant mentioned that reviewing large pull requests
of unsafe code was challenging and that they had become lazy
while reviewing such code fragments in the past. Three par-
ticipants stated rather low confidence in their review process
for unsafe code, e.g., one participant stated:

“I always have a very dreadful gut feeling whenever
I have to write anything like that or review anything
like that, [. . .] the bugs are usually very subtle and
it’s difficult to catch them.” - p13

5.5.2 Tests and Tooling

In this section, we shed light on the testing strategies for
unsafe Rust and present security-relevant tools used by our
participants. Since participants did not clearly distinguish
testing and security-related tooling for safe and unsafe Rust,
the following section does not only report measures for unsafe
code but for Rust in general, unless otherwise noted.

We found that 18 participants reported testing their Rust
code with Rust’s built-in unit tests, while ten participants also
mentioned integration tests. Only four participants mentioned
writing documentation tests, which ensure that code examples
inside the documentation are up-to-date. Moreover, one par-
ticipant indicated that they relied on external security audits,
while another participant mentioned penetration testing in
their company. Two participants mentioned testing their code
manually, e.g., by checking if permissions were set correctly
or comparing the output of an algorithm to a less performant
implementation using safe code. One participant stated to usu-
ally only test their code if they were unsure or knew that the
code could have been error-prone. Furthermore, four partici-
pants explained that they did not test their projects for security
at all:

“[N]o one of my project has a code coverage of
more than like three percent. Even my trading code,
which trades actual money, doesn’t really have test-
ing. What I do is that I manually test things and like
only the things that I’m unsure about if it works or
not.” - p17



For unsafe code, participants often mentioned being more
cautious and writing more tests to check all invariants. How-
ever, eight participants stated to test unsafe code less often
than safe code. Prominent reasons were the FFI and inter-
action with low-level hardware, which made testing rather
complex or even impossible. One participant tested unsafe
code less often than safe code, as they felt that the complex-
ity of their safe code was more challenging. Six participants
described their testing strategies for safe and unsafe codes to
be equal. One reason they gave was testing directed at the
safe interface. Two participants raised concerns that if tests
for unsafe code were run in debug mode, undefined behav-
ior might slip through their test suite and cause problems in
release mode, as there are fewer compiler optimizations in
debug mode.

Regarding security-relevant tooling, seven participants
mentioned using MIRI. While they liked the tool, participants
remarked that MIRI did not support all unsafe operations,
such as FFI or specific system calls:

“I feel like if you can run [the Rust project] with Miri
because not everything works for Miri, then you
have at least a higher chance of getting it right.” -
p26

Four participants used the profiling and debugging tool Val-
grind for security purposes. Seven participants mentioned
fuzz-like testing or the use of fuzzing tools, with some of
them manually creating various randomized input patterns
for their tests. One participant used the “Loom” tool [64] to
test their code for concurrency issues, which also helped them
find unsafe-code-related bugs.

Aside from a verification tool not being feasible for their
project, some participants stated additional reasons for not
using any. Some simply saw no benefit in the deployment for
their project, while others perceived the tools as too complex
in their usage or setup:

“ One of the great things about Rust is that a lot of
the tooling just works. [. . .] There’s a high level of
laziness when it comes to integrating new tooling. I
don’t really like to go jump through a ton of hoops
to get something set up.” - p25

15 participants used the Rust linter Clippy at least occasion-
ally. For some participants, Clippy was a “must-have”. Others
used it only for larger milestones. Some were ambivalent to-
wards the tool and annoyed by some lints. Four participants
did not use Clippy as they perceived the signal-to-noise ratio
as too low. One person explicitly stated that they were too
lazy to configure Clippy.

5.5.3 Management of Unsafe Dependencies

We were interested in the participant’s selection and verifi-
cation methods for Rust dependencies, especially since 13

participants reported deliberately including crates that encap-
sulate unsafe Rust into their project.

Only a few participants reviewed crates for unsafe code be-
fore introducing them into their project as a dependency. Two
participants mentioned that, if viable, they preferred crates that
completely forbid unsafe. In contrast, 16 participants reported
that they selected crates, including crates that might contain
unsafe, based on their reputation. The number of downloads
was mentioned most frequently in this context, followed by
the authors’ reputation. Meta-reviewing the crate by reading
code samples or documentation was the second most-used
strategy. Two participants reported that finding a lot of undoc-
umented unsafe code would be an indication not to use the
crate. The meta-reviewing strategy was also used as a fallback
plan when a crate did not have enough reputation. Eight par-
ticipants reported that they mostly inserted crates without any
form of verification. One reason was time constraints. To aid
in the selection of dependencies, one participant elaborated on
more metrics for crates.io, e.g., the amount of unsafe code in
each crate or security tags from large companies, like Google
or Microsoft, who had verified a crate for security.

Three participants who found vulnerabilities in crates on
which their projects depended solved the issue by forking
or patching them themselves. One project addressed a secu-
rity advisory in their dependencies by checking all possibly
affected code with MIRI [17] and thus tried to safeguard it.

Few participants reported regularly checking their de-
pendencies for updates. Two of them mentioned doing
so via GitHub’s Dependabot and one frequently used
cargo-update. Another three participants checked their de-
pendencies with cargo-audit or cargo-deny:

“Dependabot has recently started supporting Rust,
and I [. . .] spent a lot [of time with] CVE reports
on dependencies that we were using. ” - p14

RQ3: Security code reviewing and testing practices around unsafe
Rust used by developers.

• Most participants reviewed unsafe more thoroughly than
safe Rust

• Participants reported checking the preservation of invariants
and the integrity of the documentation for unsafe regions

• Participants often tried to test unsafe more rigorously
• However, testing unsafe was often reported as complex or

not possible at all
• The most widely used tool to test unsafe for undefined

behavior was MIRI
• A few participants reported the integration or use of

security-related tools to be cumbersome or complicated
• Participants often picked (unsafe) crates by their reputation

or at most meta-verified them

5.6 Experiences with Security Incidents as the
Result of Incorrect Use of Unsafe Rust

Most participants had no negative experience with severe
unsafe bugs. This circumstance certainly contributed to the



fact that participants generally assessed the safety approach of
Rust as favorable. They were quite satisfied with the concept
of unsafe in Rust, especially in contrast to other low-level
programming languages.

However, several participants reported undefined behavior
or bugs in unsafe code, but did not necessarily connect them
with vulnerabilities. This included bugs that lead to program
crashes or local denial of service:

“My understanding is that not all unsoundness is
necessarily a vulnerability, right? There are un-
soundnesses that are not large threats, depending
on, of course on the threat model.” - p08

Six participants gave examples for security-relevant bugs
or vulnerabilities in unsafe code that were only found post-
release. Mostly, however, the vulnerabilities were described
as minor and non-exploitable. Some participants reported un-
safe bugs to be very subtle. One participant reported a bug in
unsafe code that had gone undiscovered for one to two years
and was only found after a new compiler release. Another
participant mentioned a bug that was introduced by a rather
competent Rust programmer, and that was only found later:

“I found a piece of unsafe code that we removed
for other reasons and written by my predecessor in
the company. He was an extremely competent Rust
developer, and basically an expert at writing unsafe,
and he still missed that part.” - p07

Overall, other than having to patch bugs and push new
releases, no project suffered severe consequences of using
unsafe Rust. While participants themselves made no serious
experiences with the usage of unsafe, six participants recalled
an incident in the context of a web framework concerning the
lax usage of unsafe Rust. The crate used unsafe Rust exten-
sively, leading to a debate and a backlash in the community,
and finally to the developer quitting open source. As one par-
ticipant put it “there was only chaos, death, and destruction”
(p23).

As one reason that no serious vulnerabilities have yet been
found in Rust code, two participants pointed out that it was
easier to attack other non-Rust code, e.g., by exploiting a
C library used through the FFI. Moreover, one participant
reckoned that the community had not yet experienced severe
security incidents as Rust is still used less than C++.

Participants did not only concentrate on unsafe code in their
answers, eleven participants pointed out that security vulnera-
bilities can perfectly well occur in safe Rust, e.g., as memory
leaks are not completely eliminated by Rust’s guarantees or
because of a flawed algorithm or logical errors. Consequently,
one participant mentioned a potential security vulnerability
that had been identified not in unsafe code but in the com-
pany’s safe Rust code, and that could lead to being vulnerable
to a denial-of-service attack.

RQ4: Developer experiences with security incidences as the result
of incorrect use of unsafe Rust.

• Our participants did not experience severe security incidents
• Most reported bugs in unsafe code were minor and did not

introduce exploitable vulnerabilities
• Participants did not necessarily connect undefined behavior

or bugs with security vulnerabilities
• Consequences were limited to additional effort for imple-

menting fixes and publishing new releases
• Participants generally liked Rust’s approach to safety as

well as the unsafe concept

6 Discussion

Below, we discuss our findings.

Use of Unsafe (RQ1). Most participants tried to avoid using
unsafe code, utilizing it only when they felt they had no other
option. When they had to use unsafe, most participants fol-
lowed a cautious approach. Participants preferred including
crates instead of re-implementing features from scratch and
isolating their unsafe code, e.g., using interfaces.

Our findings suggest that the Rust community success-
fully communicates risks associated with unsafe code and
dissuades developers from using unsafe, if possible. More-
over, the Rust community makes constant efforts to replace
unsafe code with safe code.

Nevertheless, participants reported becoming increasingly
inattentive or annoyed when unsafe code was frequently used
since dealing with unsafe required more attention. Only a few
Rust projects provided policies for writing unsafe code. Most
participants relied on their common sense and the experiences
of their peers. However, we found divergent opinions in detail,
e.g., what should go inside an unsafe block or whether unsafe
code is needed. Even though this trust system among peers
seemed to work for most of our participants, this approach is
not preferable from a security perspective. We consider this
particularly important since some participants reported that
unsafe bugs were subtle and difficult to find and reproduce.
Some interviews indicated that experience might not always
be sufficient to handle unsafe code. This aligns with previ-
ous research, finding security knowledge hard to apply or
not helpful in preventing vulnerabilities [65]–[67]. Moreover,
fostering an explicit security culture is a crucial element for
motivating developers to program securely, as found through
previous interviews [61], [68], case studies in companies [69],
[70], and other means [63], [71].

Understanding and Misconceptions (RQ2). The general
comprehension of unsafe code varied among our intervie-
wees. Less than half of our participants mentioned that un-
safe code is a superset of safe code, providing new features.
Some developers believed that some or all compiler checks
are turned off inside unsafe code. We did not find apparent
differences in how our participants with different levels of



unsafe knowledge approached writing unsafe code. Most re-
ported being cautious, even if they had misconceptions about
unsafe. While Qin et al. found that developers sometimes
use unsafe code for labeling purposes [11], our interviews
underline the importance of unsafe as a beacon in the partic-
ipants understanding. They highlighted unsafe as confined
code fragments where they knew to be careful.

We applaud that the Rust community conveys essential
habits around unsafe code, such as limited use or isolation,
and that developers tend to adopt those successfully. Despite
this, based on our findings, not all developers understand the
exact functionality of unsafe. Comprehension of unsafe is
important, and communication should be improved, as the cor-
rect understanding can guide developers in their assessments
regarding unsafe code. Misunderstanding the additional risks
might induce developers to underestimate the need for strict
and cautious handling regarding security guarantees. More-
over, as Rust is still in active development, the exact behavior
of some unsafe edge cases might change over time. Undefined
behavior, working today as intended by the developer, might
lead to subtle bugs in the future [72].

Further, thinking that all compiler checks are turned off in
unsafe could lead developers to believe that verification tools
like MIRI are infeasible. As a result, they remain unaware of
tooling options, as one participant stated about unsafe code:
“[I]t’s an escape hatch. [. . .] [T]here’s not much you can do
[with tooling].” (p01)

Appropriate communication about unsafe code is also im-
portant in the context of Rust’s further adoption. If even de-
velopers that use Rust do not understand unsafe correctly,
correctly assessing Rust’s security benefits for developers not
acquainted with Rust is likely to be harder.
Guidance and Accessibility (RQ1, RQ2). The Rust commu-
nity constantly improves documentation and guidance for un-
safe code, such as the Unsafe Code Guidelines Reference [73]
or the Rustonomicon. While comprehensive documentation
about unsafe is available, the knowledge does not seem to
spread among developers sufficiently. Only half of our partici-
pants mentioned the standard reference Rustonomicon. Some
suffered from unsafe Rust misconceptions. Hence, we recom-
mend not only improving existing documentation, but also
making it more easily accessible. Based on our work, in-depth
documentation is partly rather scattered or, as one participant
stated: “a lot of hidden information [is] in GitHub issues.”
(p11). A big factor for the future is the packaging of this in-
formation so that developers are less likely to shy away and
have it more bundled in one place. Because developers often
only have little time, this information should be accompanied
by quick-to-read roundups. This collection may also include
concise and actionable guidelines for deciding for and writing
unsafe code to establish common practices that individual
projects could adopt without much effort.
Tooling and Usability (RQ3). Regarding applied testing and
review practices, most participants tried to test and review

unsafe code more thoroughly than safe code to check whether
invariants were violated. This is in line with Evans et al.,
who found participants to write more unit tests for unsafe
Rust [12]. However, we found that some participants could
only run insufficient tests because extensive testing, e.g., for
the FFI or hardware interaction, was not applicable for them.

While our participants often knew of tools like MIRI, many
did not use them. The integration and configuration of some
external tools were mentioned to be too cumbersome, and
participants preferred easier solutions. Despite research on
general tool usage [74]–[76], the issue of usability is still un-
derestimated by tool designers, although this can be a decisive
criterion for tool success:

“There’s a few fuzz testers, I use cargo fuzz. I don’t
really care [..] how good its performance is as long
as it does the thing I want. And that’s why I use
cargo fuzz, because it’s well documented and easy
to set up.” - p23

Security tools should reflect this knowledge and make their
setup as simple as possible. This is even more important since
previous work found that security is often only a secondary
concern for developers [61], [63], [68], [69]. While for Rust,
cargo successfully takes the first step towards simplifying the
management and building of crates, for some of our partic-
ipants, the burden of using security tools was still too high.
We recommend deploying simplified onboarding assistants,
such as configuration wizards. To cater to developers that are
easily distracted in their workflow, e.g., by warnings or lints
that are perceived as superfluous, tools could offer a minimal
configuration, with only the most important lints or warnings
turned on. Another approach for usage without any setup is
the integration into browser interfaces like it is done with
MIRI into the Rust playground, a web interface for the Rust
compiler. This browser integration allows one to check unsafe
code fragments without installing MIRI [77].

Dependency Selection (RQ3). Developers should be offered
support not only with tool setup, but also with the selection
of tooling and dependencies. A common practice among our
participants was to utilize crates that already encapsulated
unsafe code, so they would not need to write safety-critical
code fragments themselves. However, many interviewees did
not have time to verify the crates they included and trusted
the crates or their authors more or less blindly based on their
popularity. This is in line with Wermke et al. finding repu-
tation and activity of repositories to be common selection
criteria [49]. Therefore, we recommend trying to better as-
sist developers in choosing the right crate, e.g., by providing
easy-to-read metrics via crates.io. Examples of such metrics
could be the presence or absence of unsafe code in a crate,
or code reviews of unsafe code done by trusted entities. A
more detailed elaboration of metrics does require further re-
search. Initiatives to improve the open source software supply
chain security such as the software bill of materials [78] or



the OpenSSF scorecards [79] could be used to include such
metrics. However, external tools such as cargo-audit were
rarely used, while cargo-vet [80], which ensures that depen-
dencies are audited, was not mentioned at all. Therefore, we
suggest integrating such metrics as seamlessly as possible
into the standard crate.io repository to increase adoption by
developers.
Experiences and Future of Rust (RQ4). While we identi-
fied areas of improvement for handling unsafe Rust, none of
our participants were affected by severe unsafe vulnerabili-
ties. However, participants gave examples of unsafe code in
their projects leading to very subtle undefined behavior that
they had to patch. Some of these bugs already resided in their
code bases for longer. This illustrates the need for diligent
behavior around unsafe code. While participants reported a
mostly cautious behavior around unsafe, many did not espe-
cially focus on vulnerabilities or exploitability inside their
unsafe code but rather focused on invariants, as illustrated
by one participant: “But I’m not a security researcher. I care
about correctness. If the code is correct, it is at least not in-
secure by being incorrect.” (p07) Some participants believed
that security vulnerabilities were a different kind of bug and
treated them accordingly. This mindset is in line with previ-
ous work investigating the security of developers [61], [69]. It
demonstrates that while many developers adopt Rust because
of its security benefits, their general view on security does
not necessarily change. This might result in developers being
inclined to ignore or downplay security problems with un-
safe Rust, especially when not having a security background.
Some participants felt confident in their unsafe code, consid-
ering other attack vectors more critical. Assuming that Rust
will gain further adoption and considering that Rust replaces
languages like C/C++ for many security-critical projects, such
thinking might lead to serious security incidents, especially
since Alomar et al. found that security is often only added
retrospectively [81].

While many participants reported that they could avoid
unsafe code in the past, some use cases make unsafe code
indispensable, e.g., using Rust’s FFI. This is particularly im-
portant for software projects that move their code base from
C/C++ to Rust. While tooling exists to support developers in
transpiling C code to Rust, those do not eradicate the interac-
tion of unsafe code. A better understanding of transforming
existing code bases written in other languages to Rust has not
yet been investigated and is subject of future work.
Comparison with Unsafe in other Languages. We found
an overall cautious handling of Rust unsafe code. Participants
were wary of unsafe, as bugs were considered subtle and
sometimes hard to locate. Similar findings exist for Java.

In its internal class ‘sun.misc.Unsafe’ Java offers direct
possibilities for interaction with low-level resources, such as
allocating off-heap memory using the allocateMemory()
method. Huang et al. discussed safety improvements for
‘sun.misc.Unsafe’. Unsafe Java bugs were hard to locate and

reproduce during testing and reviewing, which was a presum-
ably common cause for despair [82]. Mastrangelo et al. ana-
lyzed the use of unsafe in Java applications and dependencies
and found that unsafe Java is in fact used, yielding poten-
tially dangerous security implications. The authors concluded
that unsafe Java was most often used where the functionality
was supposedly not otherwise available or to improve per-
formance [83]. Oracle aims to reduce the spread of unsafe
Java [84]. All the aforementioned coincides with our findings
on Rust.

The Go programming language provides type and memory
safety and includes an unsafe package as part of its standard li-
brary. Costa et al. found that Go projects tended to consolidate
the use of unsafe into a few files. Moreover, the Go commu-
nity is in a situation where breaking changes of unsafe Go
could involve similar problematic aspects as we discussed for
Rust. The exact functionality of unsafe Go could change, and,
thus, could introduce a potential for subtle bugs and vulnera-
bilities. Regarding the documentation of unsafe Go, Costa et
al. recommended more detailed official documentation for the
most frequent unsafe Go use cases they found [85]. While we
also recommend an improvement of the documentation for
unsafe Rust, we argue that the situation is somewhat differ-
ent for the Rust community. Our participants reported many
guidelines and lots of documentation for unsafe Rust. How-
ever, some of them are hard to find or too complex. Hence,
Rust seems to be more advanced in the development of unsafe
documentation but would benefit from more easily accessible
and usable documentation.

We propose to further investigate similarities with other
programming languages. By comparing use cases, difficulties,
and solutions, and exploring connections, we think developers
and researchers can better collaborate and improve program-
ming language security in many ways for and beyond Rust.

7 Conclusion

We conducted 26 interviews with experienced Rust developers
to investigate their understanding and use of unsafe Rust and
asked about their writing, reviewing, and testing approaches
for unsafe code. Our results show that unsafe Rust was used
rather cautiously. Many participants tried to avoid unsafe Rust
whenever possible. They perceived it to be scary or error-
prone. However, especially when interacting with hardware,
operating systems, or other languages, developers needed to
use unsafe code. Our participants tried to follow best practices
such as creating safe interfaces or properly documenting their
code. However, bad habits and external influences had impacts
on their decisions and behavior. They often wrote unsafe code
to the best of their belief and could not follow security policies
or guidelines.
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