
“That’s my perspective from 30 years of doing this”: An Interview Study on
Practices, Experiences, and Challenges of Updating Cryptographic Code

Alexander Krause
alexander.krause@cispa.de

Harjot Kaur
harjot.kaur@cispa.de

Jan H. Klemmer
jan.klemmer@cispa.de

Oliver Wiese
oliver.wiese@cispa.de

Sascha Fahl
sascha.fahl@cispa.de

CISPA Helmholtz Center for Information Security, Germany

Abstract

Keeping cryptographic code up to date and free of vulner-
abilities is critical for overall software security. Updating
algorithms (e.g., SHA-1 to SHA-512), key sizes (e.g., 2048
to 4096 bits), protocols (e.g., TLS 1.2 to 1.3), or transition-
ing to post-quantum cryptography (PQC) are common objec-
tives of cryptographic updates. However, previous work and
recent incidents illustrate developers’ struggle with crypto-
graphic updates. The research illustrates that many software
products include outdated and insecure cryptographic code
and libraries. However, the security community lacks a solid
understanding of cryptographic updates. We conducted an
interview study with 21 experienced software developers to
address this research gap. We wanted to learn about their expe-
riences, approaches, challenges, and needs. Our participants
updated for security and non-security reasons and generally
perceived cryptographic updates as challenging and tedious.
They lacked structured processes and faced significant chal-
lenges, such as insufficient cryptographic knowledge, legacy
support hindering cryptographic transition, and a lack of help-
ful guidance. Participants desired the assistance of crypto-
graphic experts and understandable resources for successful
updates. We conclude with recommendations for developers,
academia, standards organizations, and the upcoming transi-
tion to PQC.

1 Introduction

Cryptography is constantly evolving and is crucial for over-
all software security. Unlike software in general, crypto1

implementations—while keeping their functionality—can
lose their security guarantees over time, e.g., weaknesses in
cryptographic primitives or protocols might decrease security
when a vulnerability is discovered. In the past, there was often
a need for transitions, meaning that prior solutions had to be

1For brevity, we use the term crypto throughout the paper instead of words
like cryptography or cryptographic.

deprecated and replaced by new, (more) secure, state-of-the-
art crypto [1, 2]. Crypto code is particularly susceptible to
weaknesses that emerge over time, often due to the depreca-
tion of primitives or the discovery of vulnerabilities in previ-
ously secure algorithms. This differs from general software
vulnerabilities, which are often due to implementation errors,
e.g., the log4j incident [3] in 2021. In contrast, crypto weak-
nesses often require fundamental changes to the underlying
algorithms or protocols, making updates more complex and
far-reaching. Crypto transitions and vulnerabilities require
updating crypto implementations; we use the term crypto
update for this.

For example, key length recommendations for RSA and
AES increased, and hashing algorithms evolved from MD4
to MD5, later to SHA-1, and finally to SHA-2 and SHA-3 [4].
The SHA-1 deprecation, which took more than a decade, il-
lustrates the long-term nature of crypto transitions compared
to typical software patches. Even in the younger history, post-
quantum cryptography (PQC) algorithms have, in part, re-
placed classical crypto to counter the risks associated with the
emergence of quantum computers [5]. Such crypto updates
are necessary to ensure security in the future and proactively
counter “store now, decrypt later” attacks, as well as to miti-
gate newly discovered vulnerabilities in crypto.

While updating software in general can be challenging,
we argue that crypto updates, in particular, are complex and
require even more consideration. “Never implement your own
crypto” is a common phrase to prevent non-experts from mak-
ing serious mistakes that put users and their data at risk. For
example, developers might choose wrong algorithms, keys
that are too short, or weak hashing functions [6–8]. Making
the right decisions requires expert knowledge. In 2008, Bern-
stein et al. introduced the NaCl crypto library to improve
usability, e.g., by secure defaults that prevent non-experts
from having to choose parameters [9]. Another challenge in
implementing crypto is that it can be tedious, e.g., when spe-
cific standards have to be met in order to pass audits. Last but
not least, crypto updates might impact compatibility between
different versions of the same software or protocol, which is

https://orcid.org/0000-0003-2993-2568
mailto:alexander.krause@cispa.de
https://orcid.org/0009-0007-4730-0034
mailto:harjot.kaur@cispa.de
https://orcid.org/0000-0002-6994-7206
mailto:jan.klemmer@cispa.de
https://orcid.org/0000-0003-2483-327X
mailto:oliver.wiese@cispa.de
https://orcid.org/0000-0002-5644-3316
mailto:sascha.fahl@cispa.de

often spread over a complex distributed system. Ott et al. also
acknowledge similar challenges referring to crypto transition
and agility and found this to be a major research gap, espe-
cially when considering the upcoming transition to PQC [1].
LaMacchia highlighted that the PQC “migration will be more
involved and complicated than any we have faced in the past”
and that early awareness, education, and planning are essential
for a successful update [2].

Crypto transitions might take a long time: Currently, the
industry faces the transition to PQC [10]. In 2024, Apple an-
nounced the upgrade of iMessage’s crypto protocol to PQC to
protect users from “Harvest Now, Decrypt Later” [11]. Until
the first PQC standards from the U.S. National Institute of
Standards and Technology (NIST) and the Internet Engineer-
ing Task Force (IETF) became final after eight years [12–
14], Google tested and implemented an early draft of the
X25519Kyber768 PQC algorithm in Chrome. They now have
to update again to comply with the final standards [15].

Much research investigates developers’ and companies’
mindsets, challenges, and experiences regarding updating soft-
ware components or how developers deal with deprecated
APIs [7, 16–19]. We investigate developers’ strategies to plan
and perform crypto updates, as well as needed improvements
to mitigate current challenges. To this end, we explore the
following research questions:
RQ1 [Awareness] How do developers become aware of (po-

tential) updates of crypto implementations?
RQ2 [Objectives] Why do developers update crypto imple-

mentations?
RQ3 [Processes] What are the developer’s processes when

planning and performing crypto updates?
RQ4 [Challenges] What are developers’ experiences and

challenges when performing an update of a crypto im-
plementation?

Contributions and Key Findings. We conducted 21 in-
depth semi-structured interviews with experienced developers
of crypto products who had experience updating crypto im-
plementations. We find crypto updates to be unique and more
complex than regular software updates, e.g., outdated hard-
ware plays a role in algorithm choice. While most participants
updated their crypto implementation for security reasons, ex-
ternal factors or non-security reasons such as performance
also played a role. However, participants lacked structured
processes to update their crypto implementations. They ex-
perienced several challenges and blockers during the update
process, such as legacy backward compatibility, insufficient
crypto knowledge, or lack of helpful documentation. We fi-
nally identified participants’ needs for improving the crypto
update process, e.g., the need for crypto experts or resources
that non-crypto developers can easily understand. Based on
our insights, we conclude with recommendations for different
stakeholders, such as developers of crypto libraries, develop-
ers using those libraries, standardization organizations, and
academic research.

2 Related Work

We discuss related work and highlight our novel contributions
in three key areas: (1) updates of software components and
crypto, (2) deprecation of libraries and application program-
ming interfaces (APIs), and (3) misuse of crypto APIs.
Updating Software Components and Cryptography. Pre-
vious work highlighted the difficulties and implications asso-
ciated with out-of-date dependencies [20–22]. For example,
Derr et al. found that 85.6% of libraries from analyzed An-
droid apps were outdated but could be upgraded by at least
one version without modifying the app code [22]. This also
applied to the upkeep and updating cryptographic APIs. In
2015, Cox et al. concluded that continuously measuring de-
pendencies increases developers’ awareness and that utilizing
outdated dependencies increases the likelihood of encounter-
ing security issues up to four times [23]. Previous research
has concentrated on the evolution of software, outlining the
difficulties that developers encounter, like insufficient doc-
umentation (which is particularly challenging when there
is a high rate of employee turnover), the lack of consistent
development practices among teams, and the struggles in pre-
dicting and assessing the consequences of alterations [24–
26]. Haney et al. identified maintaining backward compati-
bility with older cryptographic algorithms as the main prob-
lem after updating [27]. The organizations studied in this
research believed that providing excellent product security
and robust cryptographic implementations is fundamental [27,
28]. While previous work presented different insights on up-
dates as part of a larger organizational focus, we focus on
cryptographic updates specifically and qualitatively explore
them in depth.
Cryptographic Deprecation. The deprecation of crypto is
one reason for the need to update cryptographic implemen-
tations. Deprecating non-security-related APIs in libraries
turned out to be a challenge for library developers as well as
for users of libraries [17, 29–31]. Gorski et al. investigated
developers’ suggestions for good deprecation warnings in
cryptographic APIs and identified which security information
is considered helpful in avoiding insecure cryptographic API
use during development [32]. Ott et al. reported that many
cryptographic workshop participants experienced problems
with deprecating algorithms that are in active use [33]. Depre-
cations, such as those of SHA-1, MD4, or MD5, are usually
suggested by institutions that define or recommend standards,
like the IETF, NIST, or German Federal Office for Informa-
tion Security (BSI). These deprecations typically stem from
known weaknesses in cryptographic algorithms or the rec-
ommended key length being too short to increase security
preventively. Developers often implement crypto suggested
by researchers before a new cryptographic algorithm becomes
a standard, which can lead to additional challenges [34]. How-
ever, even if a standard exists, it poses challenges for develop-
ers, including standard deprecation and updates [35].

In general, the literature indicates that cryptographic depre-
cation is a difficult problem that necessitates clear and helpful
deprecation messages and documentation to assist developers
in making informed choices.
Misuse of Cryptographic APIs. Previous research has in-
vestigated the misuse of cryptographic APIs. Rahaman et al.
developed a code screening tool and found that in Android
applications, 95% of the cryptographic vulnerabilities origi-
nate from misused third-party libraries [36]. Similarly, Egele
et al. found that 88% of Android applications suffered from a
misused cryptographic API [37]. Gao et al. used a data-driven
approach and found that Android developers who tried to
fix API misuses were often unable to make the correct fixes.
Additionally, misuse was often reintroduced by later updates,
indicating that the initial fix may have been unintentional [38].
Mistakes related to cryptographic APIs did not only occur for
Android; other languages were affected as well. For exam-
ple, Wickert et al. conducted an empirical study by statically
analyzing Python projects, revealing that over 50% misused
cryptographic APIs [39]. Furthermore, Georgiev et al. found
many non-browser SSL implementations to be wholly broken
and identified cryptographic APIs as the reason [40]. The
security not only depends on the underlying cryptographic
algorithm but also on the design and usability of the particular
cryptographic libraries. Past studies have focused on the de-
sign and usability of cryptographic libraries and their impact
on code security. Acar et al. found that simplicity, support of
auxiliary tasks, and thorough documentation are critical as-
pects of secure cryptographic libraries [7]. In a related study,
Patnaik et al. identified 16 usability issues and four areas
where these libraries fail to implement usability principles:
documentation, confusion, postmortem, and compatibility is-
sues [16]. Overall, using crypto presents difficulties due to a
lack of user-friendly documentation and implementations.

3 Methodology

To collect in-depth insights into updating crypto implemen-
tations and the challenges for developers and other involved
professionals, we conducted 21 semi-structured interviews.
Interview studies are designed to explore complex phenomena
and individual narratives in detail, focusing on rich, contextual
data rather than quantitative metrics or statistical generaliza-
tions. Figure 1 shows an overview of our study process. We
provide comprehensive study materials in a replication pack-
age (Section Open Science).

3.1 Recruitment Process
We recruited software developers who had experience in up-
dating crypto implementations from companies, open-source
projects, and a freelancer platform. To ensure interviewing
developers with different perspectives, we used a mix of the
following recruitment strategies [41–45]:

Figure 1: Methodology of our 21 semi-sturctured interviews
and their qualitative analysis.

• Professional Contacts: We used our professional con-
tacts to recruit experienced developers from companies
and freelancers. Some of these participants were ac-
tive open-source contributors. We used snowball sam-
pling [46] and asked professional contacts to refer us to
potential participants meeting our inclusion criteria.

• Email: We sent email invites to two groups: (1) Devel-
opers of crypto products who made documented contri-
butions to crypto projects: We chose those developers
based on an online list of encryption products from a
survey conducted through Bruce Schneier’s blog [47].
Participants recruited through this list included profes-
sionals from companies that provide crypto products and
open-source developers, of which we were able to find
contact information on their personal publicly available
websites. (2) Open-source project developers: To se-
lect suitable projects, we collected GitHub projects with
activities from January until October 2023 that had the
“cryptography” tag. We excluded repositories that did
not contain any source code, e.g., collections of docu-
ments. We randomly selected projects and searched for
active contributors. To adhere to GitHub’s Acceptable
Use Policies [48], we refrained from using contact infor-
mation from GitHub projects but contacted contributors
via public websites external to GitHub.

• Upwork: To recruit freelance developers, we posted
our job on the freelance platform upwork.com, which is
recommended for research projects [41].

We asked interested invitees to fill out a short screening
survey. We collected demographics about the potential in-
terviewee and background information on their experiences
with cryptography and updates of crypto code. Based on this

information, we verified participants’ answers about experi-
ences with updating crypto code by reviewing their contri-
butions to crypto projects. We thus made sure that, we only
invited participants with experience updating crypto code and
excluded everyone who did not. The survey explained our
study’s purpose, and we obtained consent for participation,
data processing, and interview recording. We offered each par-
ticipant a compensation of $60 via PayPal or Upwork, which
four participants declined.

3.2 Interview Guide Design
Our interview guide consists of two parts. The first part con-
tains general instructions for the interviewer about conducting
an interview and helpful phrases inspired by Rader et al. [49].
The semi-structured interview guide contains 71 questions
related to our research questions. These allowed us to ask the
same questions and provide the same information to all inter-
viewees. Based on their answers, some participants did not
encounter specific follow-up questions. The interview guide
defined crypto implementations as crypto protocols, primi-
tives, algorithms, and libraries. We also included a definition
of software supply chain security [50].
Piloting and Refinement. After creating the initial interview
guide, we contacted experts who had experienced crypto code
updates. We further adopted an iterative approach to refine
the initial version of our interview guide. This procedure
involved conducting three walkthroughs with experienced
researchers from our group. To improve the quality of the
interview guide, we gathered feedback on the clarity and
comprehensiveness of our questions based on the researchers’
experiences. Additionally, we used the first two interviews
with our professional contacts as pilots. We included these
two interviews in our final data analysis since we made only
minor changes to the interview guide.
Interview Guide Structure. Below, we outline the structure
of our interview guide with brief descriptions of all sections.
Appendix B provides the entire interview guide.

The first two sections of the interview include an intro-
duction, a briefing, and questions about the use of crypto in
software projects. In these sections, consent to record the in-
terview is obtained again, and we mentioned the possibility
of skipping questions and stopping the interview at any time.
The first questions contribute to a better understanding of
crypto, the tasks, and the participants’ roles, and they help in
building a friendly, open-minded interview atmosphere.

Before diving into the crypto-update-related questions, we
introduce Google Chrome’s deprecation process for SHA-
1 certificates (Section 1) as an example of updating crypto
software. This example aims to remind participants of their
own previous experiences with crypto updates. We continue
with questions about their awareness (RQ1) and reasons for
updating (RQ2). The next part aims to identify how develop-
ers’ crypto update processes (RQ3) look like. The following

questions give insights into the challenges (RQ4) and devel-
opers’ needs and required support. Lastly, we ask for feedback,
comments, and information our questions might have missed.

3.3 Interview Procedure

Between July 2023 and April 2024, we conducted 21 inter-
views with participants from various recruitment channels
(Section 3.1). We recruited five participants through profes-
sional contacts, four freelancers through Upwork, one partici-
pant through snowball sampling, and eleven through sending
out emails, resulting in a total of 21 participants.

We conducted most interviews with one researcher leading
and the other supporting the interviewing process. The sup-
porting interviewer ensured that the main interviewer did not
miss any interview questions and asked follow-up questions
when necessary. We conducted the interviews in English2 via
Zoom [51] or BigBlueButton [52]. We advertised interviews
to last about 60 minutes, while the actual interviews lasted a
median of 51:14 minutes.

3.4 Qualitative Data Analysis

We used the GDPR-compliant service Amberscript [53] to
transcribe the interviews and deleted the recordings after man-
ually reviewing the transcripts for accuracy. We took notes
during the interviews and deleted parts from the recording
that contained PII or otherwise sensitive information in case
our participants requested deletion.

Three researchers leveraged an iterative, semi-open coding
approach [54, p. 130] to analyze the transcribed interviews.
To begin, two researchers created an initial codebook based
on the interview guide and our expert knowledge from related
work and conducting the interviews. Two researchers inde-
pendently coded each interview transcript and merged and
discussed their codings after each interview, resolving any
conflicts, and iteratively added new codes to the codebook
when necessary [54, 55]. We obtained the final codebook by
axial and selective coding to reduce the number of codes, and
we used thematic analysis [56], [57, pp. 72–75] to identify
common themes and topics in our data following established
practices in our community [44, 58–60]. All researchers met
for a discussion session to identify key themes using affinity
diagramming [61]. Due to the exploratory nature of our data
analysis [62] and established practices in our field [42–44,
58, 63–65], we decided not to calculate inter-rater reliabil-
ity. The coding reached inductive thematic saturation after
17 interviews [66]. To ensure data saturation and validate our
findings, we conducted four supplementary interviews. Over-
all, we assigned 1402 codes, with a median of 67 codes per
interview transcript. We provide the final codebook online
(Section Open Science).

2We conducted one German pilot interview due to participant preference.

3.5 Limitations

Our study has limitations typical of qualitative research meth-
ods and should be interpreted in context. This includes inter-
view study biases, like self-selection, self-reporting, social
desirability, and potential over- or under-reporting of indi-
vidual experiences. To counter these biases, we stressed that
we do not judge participants’ answers and allowed them to
skip questions at any time, as they preferred. As is typical
for qualitative research, the above biases can influence results
and might not be generalized to broader populations. We re-
cruited a sample with different backgrounds and experiences
and are confident we have gained high-quality insights that ex-
plore common practices and challenges around crypto updates
in depth. During the interview, we used the SHA-1 Google
Chrome deprecation process as an example to set the context
when we started talking about participants’ experiences with
updating crypto code. We may have influenced participants’
responses. Although participants discussed their experiences
independently, we cannot completely rule out potential bias
from using this specific case.

3.6 Demographics

We present a detailed overview of the participants’ demo-
graphics in Table 1. While we recruited 21 participants with
different backgrounds in terms of experience and contribu-
tions, we identified two participant groups: 13 participants
updated self-implemented crypto implementations (group S),
e.g., self-designed crypto protocols or primitives in crypto
libraries. Twelve primarily used and updated existing crypto
implementations in their own software (group U), e.g., using
a crypto library. Four participants belonged to both groups.

Our participants were software engineers, open-source de-
velopers, administrators, and project leaders. They dealt with
various crypto aspects in their projects, like encryption, sign-
ing, implementing low-level crypto primitives or APIs, crypto
libraries, and hashing. They used and implemented crypto
protocols, reviewed and maintained crypto implementations,
and improved the security of existing crypto implementations.
Participants mainly dealt with the following crypto imple-
mentations: Advanced Encryption Standard (AES), elliptic
curve cryptography (ECC), RSA, HTTPS and TLS protocols,
diverse SHA algorithms such as SHA-1, SHA-2, or SHA-256,
and PQC. Participants who implemented crypto by them-
selves generally had a deeper understanding and knowledge
of crypto. Those who used existing crypto implementations
often had no dedicated background in crypto, nor did they
volunteer to handle crypto implementations. Instead, their
mindset was that somebody had to deal with crypto, and even
their limited knowledge was better than neglecting it.

0% 15% 30% 45% 55% 70% 85% 100%

None A few Some Many About Half Majority Most Almost All All

0 1 – 3 4 – 6 7 – 9 10 – 11 12 – 14 15 – 17 18 – 20 21

Figure 2: Overview of the quantifiers and percentages used
throughout our results. Please note that each quantifier refers
to the same number of participants throughout the study.

4 Results

We report the findings of our semi-structured interview study
with 21 experienced software developers about their experi-
ences, approaches, and challenges when updating crypto code
in software and hardware products. We follow established
practices of prior interview studies [42, 67–70] by using the
quantifiers from Figure 2 to illustrate the prevalence of our
findings and underline the qualitative nature, instead of re-
porting exact counts.

4.1 Crypto Update Process
Depending on their projects and backgrounds, participants
experienced various update scenarios. While developers, who
implemented crypto algorithms and primitives, less often up-
dated crypto code, it was a recurring task for those who relied
on existing crypto implementations. In contrast, some solo
developers only worked on crypto projects as side projects
and, therefore, needed more time.

“It has taken ten years. However, at that time, because the
project was mostly an open-source side project, for sure, there
was no full-time work on this. Maybe it’s half a year in total.”
— P9

However, the update frequencies varied widely among par-
ticipants, from once a week, which applied to those who im-
plemented and updated crypto primitives and algorithms in li-
braries, to once every two or three years for those who worked
with other software. Updating used crypto libraries was often
perceived as easier and faster than implementing new algo-
rithms or primitives. Crypto transitions took the longest. We
also found that those participants who frequently updated
crypto implementations did this because of vulnerabilities or
as a preventive measure.

Figure 3 gives an overview of the crypto update process
we distilled from the interview analysis. Below, we report our
findings following the phases of this update process.

4.1.1 Crypto Update Triggers

Our participants considered crypto updates, especially those
related to vulnerabilities, critical and timely. For this purpose,
they had various information sources and followed different
strategies to learn about potential updates. They also reported
various consequences of becoming aware, such as rolling back
to a previous version because an update was unavailable.

Table 1: Overview of interviewed contributors, their project background, and project metadata. We only report aggregated project
metrics to preserve both our participants’ and their projects’ privacy.

ID

Interview Demographics

Duration Recruitment
Channel Occupation Involved

Projects Contributions Dev.
Exp.1

Sec.
Exp.2

Highest
Degree Group3

P1 0:35:46 Prof. Network Software Engineer 11–15 Company, Open Source 14 8 High School S
P2 1:55:34 Snowball Software Engineer >20 Solo, Company, Open Source 35 30 Master S,U

P3 1:12:02 Prof. Network
Software Engineer,
Manager 6–10 Company, Open Source 12 12 Master U

P4 0:49:11 Email Software Engineer >20 Open Source 40 37 Bachelor U

P5 0:49:05 Email
Head of Research,
CISO 6–10 Company, Open Source 20 35 PhD U

P6 0:34:58 Upwork Software Engineer 16–20 Company 20 12 Bachelor U
P7 0:45:46 Upwork Software Engineer 1–5 Company 20 12 Bachelor U
P8 1:01:56 Email Software Engineer 6–10 Solo, Company 7 10 Bachelor S
P9 0:35:06 Email Software Engineer >20 Solo, Company, Open Source 35 23 Master S,U

P10 1:04:50 Email Software Engineer >20 Solo, Company, Open Source 20 5 High School S
P11 0:47:19 Upwork CTO >20 Open Source 20 10 Master S
P12 0:55:06 Prof. Network Software Engineer 1–5 Company, Open Source 8 13 Bachelor S

P13 0:35:06 Prof. Network
Head of Security,
Software Engineer 6–10 Solo, Company, Open Source 25 10 High School U

P14 1:02:33 Upwork Software Engineer >20 Solo, Company 20 4 Master U
P15 1:04:01 Upwork CTO 16–20 Company 12 3 Master U
P16 0:49:19 Prof. Network Researcher 6–10 Solo, Open Source 26 18 PhD S
P17 0:52:01 Email PhD Student 6–10 Open Source 9 7 Master S,U
P18 0:31:12 Email Researcher 1–5 Solo, Open Source 40 35 PhD S
P19 0:57:10 Email PhD Student >20 Solo, Open Source 6 2 Master S,U
P20 0:27:28 Email Research Engineer 1–5 Solo 5 5 Master S
P21 0:57:17 Email Student 1–5 Solo 3 0 High School S

1 Developer experience in years. 2 Security experience in years. 3 We identified two participant groups: (S) developers who updated self-implemented
cryptography, e.g., libraries or primitives; (U) developers using cryptography for their own projects/products.

The majority of our participants learned about a crypto
update through colleagues, including new ones joining their
team and pointing out security issues, developers, or other
experts, e.g., on social media in general or GitHub users in
particular. In addition to GitHub issues, one participant said
that “for some reason, quite a lot of people prefer to send
emails rather than raise issues” (P10). A few were notified
through reports in their organizations’ bug bounty programs
or a confidential mailing list. For example, one participant re-
ported being under non-disclosure because their company got
“early access information” on vulnerabilities through mailing
lists from vendors or security-critical projects.

Specifically for social media, one participant mentioned
that this requires “following the right people” (P13), i.e.,
crypto experts, on Mastodon, X, LinkedIn, Slack, or blogs.
However, it might be challenging to identify those experts.

While many participants used Common Vulnerabilities and
Exposures (CVE) trackers to be informed about vulnerabil-
ities, a few participants noticed that CVE trackers may not
cover all vulnerabilities and signed up for mailing lists, e.g.,
of a crypto library they used, to receive critical information
on time. Participants also learned about an update through
their Integrated Development Environments (IDEs) (e.g., by
getting notified of using an outdated crypto dependency) or
other software developing tools they used, like deprecation

warnings in a web browser’s developer console. During a
benchmark test, one participant discovered that their existing
crypto implementation was performing well below expecta-
tions, resulting in an update (Section 4.1.2).

More generally, a few participants were aware of the prob-
lem that today’s state-of-the-art crypto might be considered
insecure in the future and will, therefore, require an update at
some point. P3 stated:

“I think, in most cases, [updating crypto is] a known thing that
needs to be done. That’s in the zeitgeist. No specific notification
or event, but it’s just like everybody knows SHA-1 is weak, so
we must get rid of it at some point.” — P3

Key Takeaways: Crypto Update Triggers.

• Peer developers, social media, and GitHub issues were primary
sources for crypto-update-related information.

• Participants relied on CVE trackers and (confidential) mailing
lists to receive crypto-related vulnerability notifications.

4.1.2 Objectives of Updating Cryptography

Participants updated their crypto implementations for differ-
ent reasons. While security is a central consideration for them,
they also mentioned other objectives not related to security.

Preventive Security Upgrades. Many developers updated
their code to improve security. Some intentionally updated

Developers

Self-driven
discovery

Company/Expert with pre-
 access to vulnerabilities

Privileged access
only

Public expert
channels

Bug bounty
hunters

External
triggers

Users/Community

Preventive security
improvment

Vulnerability fix

Keeping up with
regulation,

standards and
compliance

Crypto perfomance
or functionality

improvment

Integration
into regular
update plan

Emergency crypto
update

Source code Advice & Support Resources

Review

Testing

Beta release Phased rollout

Triggers (4.1.1) Objectives (4.1.2) Planning (4.1.3) Execution (4.1.4 - 4.1.5)

Management Developers

Developers

Cryptographer

Developers

QA

Expert

Users

Identified theme

External stakeholder

Internal stakeholder

Users

Standardization
organizations

NIST
IETF

Vendors

Implementation
 (4.1.4)

 Security
 & Quality
Assurance

(4.1.5)
Rollout

 & Release
(4.1.4)

Skip crypto update

Delay crypto update

Successful

Failed

Final outcome

Legend

Figure 3: Illustration of the process of a crypto update, divided into six distinct phases: triggers, the objective of updating,
planning, implementation, security & quality assurance, and rollout & release, including the involved stakeholders. The outcome
of a crypto update process can be either successful, failed, skipped, or delayed.

for preventive reasons, e.g., by increasing the key length or
switching to a more secure algorithm, e.g., updating from
SHA-2 to SHA-3. One participant fittingly summarized: “We
try to be ahead of the curve.” (P10). We note that preventive
crypto updates are distinct from vulnerability fixing, as the
participants’ motivation in these cases was to maintain a
security margin, e.g., preventively updating to PQC before
powerful quantum computers become available.
Vulnerabilities. Besides preventive crypto updates, the other
main motivation for a crypto update was to remediate actual
security issues. About half of our participants deployed crypto
updates to fix security vulnerabilities, e.g., “We had security
issues on a protocol two times, where we had to immediately
fix it because it was [vulnerable].” (P9). Another example is
a participant who reported constant attacks due to vulnerable
crypto that required remediation through a crypto update:

“They were continually attacked by people who reverse-
engineered the [. . .] encryption scheme and managed to use
the tools that allowed them to cheat.” — P8

Crypto Standards. External factors forced many partici-
pants to update their crypto implementation. For example,
they responded to an implementation’s deprecation, e.g., in-
creasing key length due to new recommendations, removing
methods from a crypto library, or updating primitives or refer-
ence implementations because of changed standards. A few
had trouble with crypto standards that changed or with in-
compatible implementations of a standard, e.g., “Every now
and then, you run into a new implementation that interprets
the standards differently from everyone else.” (P18). Besides
changing standards, the participant was concerned about the
influence of big industry players that might enforce a de facto
standard that requires updating crypto implementations: “If
Google decides to update everything in Chrome, [. . .] the
entire world will be updated.” (P18).
Non-Security Reasons. Non-security reasons for a crypto
update were critical for some participants. For example, one

participant mentioned performance as their main obstacle and
motivation to perform a crypto update for improved perfor-
mance: “If there are significant performance upgrades on
the library themselves” (P8). Some other developers updated
because new crypto algorithms became available or libraries
introduced new features they wanted to use, e.g., “use of new
classes and APIs” (P12). This includes higher library usability
for the developer or a better fit for their use case.

Key Takeaways: Objectives of Updating Cryptography.

• Security improvements are a central consideration for updates.
• Preventive updates aim to maintain a security margin for future

threats.
• Vulnerabilities often require immediate fixes through updates.

4.1.3 Planning a Cryptographic Update

Before implementing and rolling out the actual crypto update,
participants had various aspects in planning how to approach
the crypto update. This mainly concerns the urgency and,
therefore, the timeframe in which the update needs to be
completed. A possible decision in this step might also be to
skip or delay an update.

Many developers systematically and routinely analyzed
the urgency of an upcoming crypto update to determine its
priority and further steps. The implementation of such up-
dates, however, faces significant constraints and complexities
in various scenarios (Section 4.3). In urgent cases, like vul-
nerabilities, a few participants tried to update their code as
quickly as possible, e.g., by deploying emergency updates:

“If we have updates that fix critical vulnerabilities [. . .] we have
emergency updates [. . .] where the fix is done and published
immediately.” — P8

One participant explicitly tried to estimate potential negative
consequences, e.g., becoming vulnerable or causing negative
effects for customers due to unavailability or incompatibility
if the update is not done immediately and decided to update in

the regular release cycle instead. More often, some developers
incorporated the necessary crypto code changes into their
roadmap or upcoming releases. One participant described a
strategy depending on breaking code changes as follows:

“[We] look at the breaking changes, depending on that, do the
[update] [. . .]. Depending on the size and the differences, [I
read] the history and diffs of the actual code changes and then
do [the update].” — P11

In some situations, developers explicitly highlighted the
importance of fully understanding the crypto issues in order
to prevent future crypto issues:

“We were first shocked to see that our product is so vulnerable
and we are lacking a lot of security aspects [. . .]. We started
educating and training ourselves about the different security
violations that can occur.” — P6

Decision-Making Process. While some participants men-
tioned having a pre-defined decision-making process, such as
release meetings, to discuss crypto updates, the majority had
no dedicated decision-making process for crypto updates.

However, the existing decision-making processes varied
widely. Some participants reported that the management
would be in charge of this process, and some made update
decisions alongside other involved stakeholders, e.g., other
developers or management. In contrast, only a few men-
tioned that a single developer was responsible for the decision-
making process. A few specifically stated that a crypto expert
(someone with dedicated crypto expertise and education) was
responsible.

Without a decision-making process, we found that deci-
sions were made mainly by an individual stakeholder, e.g.,
developers, without syncing and discussing update decisions
with the larger team. This was particularly challenging for
solo developers:

“There wasn’t an actual concrete plan that I was given. I
just [. . .] started by doing research on my own, [. . .][and] to
see which library implements these secure algorithms. [. . .][I
looked] at those libraries to see if they are flagged as depre-
cated or if they don’t have a lot of downloads. If many people
are using it, chances are it can’t be that bad.” — P7

Key Takeaways: Planning a Cryptographic Update.

• Many developers lacked a structured process for crypto up-
dates.

• Crypto updates’ urgency and timeframe varied based on devel-
opers’ project-related factors, such as team size or used crypto
algorithms.

• Decision-making processes ranged from individual choices to
team discussions.

4.1.4 Implementing a Cryptographic Update

Participants followed diverse update implementation pro-
cesses, mostly due to the different nature of their projects,
e.g., some are rolled out to customers and end-users, some are
crypto libraries, and some have requirements in their compa-
nies. Some participants reported quality assurance processes

(Section 4.1.5), including testing their update in development
environments before deploying it.

Ultimately, a few updates included switching crypto li-
braries if a library does not implement fixes—even if partici-
pants generally tried to avoid this additional work:

“If there’s a bug that’s found in a library like a timing attack
or some stuff is left hanging around in memory, and we find it
and the developers are not really responding to fix it or apply
it to their upstream. In that case, we try to move to a different
library that’s more reliable, but we try in the first place to vet
at the start if the library is reliable or not.” — P17

Involved Stakeholders. Almost all participants were in
charge of the crypto update process and implemented the
update independently of others. About half could rely on
other software developers on their team to support them in
performing the crypto update. While many participants re-
ported their projects or companies consulted external experts,
some were supported by internal experts, e.g.,

“I’ll rely on experts for our companies as internal experts for
crypto, and external experts for really hard math or practical
crypto analysis.” — P12

In a few cases, the management was involved, mostly in ap-
proving major crypto changes. Solo developers generally re-
ceive no support and have to take on all the roles themselves.
Information Resources. Many participants who relied on
resources besides experts mostly searched online for guid-
ance on planning and implementing a crypto update. A few
exchanged experiences and engaged in discussions in “de-
veloper discussion forums or other places [like] Reddit [or]
StackOverflow” (P15), not necessarily to discuss implemen-
tation details. Others reported considering academic publica-
tions, but only when implementing novel crypto primitives
when other information resources are not available. However,
scientific publications were often reported to be complicated,
hard to understand, and time-consuming to read:

“I also tried to check out several academic [. . .][papers]. I only
hold a bachelor’s degree in computer science and haven’t
specialized in [. . .][crypto]. Well, it was a bit more time-
consuming to understand the actual research papers.” — P7

Although participants used standards for the crypto update
decision, no participant mentioned consulting those standards
when implementing the actual crypto update. Potential ex-
planations might be that participants did not mention them
because it was too obvious or because standards provide little
actionable guidance. For developers using crypto libraries, a
few participants mentioned reading the libraries’ changelogs
to get update guidance (e.g., on breaking changes that might
impact compatibility). One developer contacted a processor
manufacturer to understand why their crypto implementation
did not work on a specific processor.
Required Time and Effort. We observed differences regard-
ing the duration and required effort when performing crypto
updates. Some update processes took over a decade, while

others took more than a year, e.g., “the RSA deprecation [. . .]
took five years” (P4). Many participants reported that updates
took multiple months or weeks; some mentioned that fixes
could be implemented in several days or less. The latter is typ-
ically the case for small and less complicated crypto updates,
as P2 explained: “Oftentimes, the fix is obvious. It’s one or two
lines. It’s an easy change to make, deploy, and test internally.”
(P2). A few participants reported on more user-oriented meth-
ods, including beta phases or phased rollouts, which allowed
developers to collect detailed feedback on the crypto update’s
functionality and security before rolling out the update to a
larger group of users. Regarding technical effort, participants
mentioned the need for code reviews (Section 4.1.5), working
with release managers on emergency updates, and performing
major rewrites of their code to ensure compatibility whenever
the dependent crypto library was updated. Another contribut-
ing factor is the extent of necessary code changes and several
challenges in the update process (Section 4.3).

Key Takeaways: Implementing a Cryptographic Update.

• Implementation processes varied widely based on project’s
nature and requirements.

• Most participants managed the update process on their own.
• About half could rely on other team members for support.

4.1.5 Crypto Update Security & Quality Assurance

Almost all participants reported some code security and qual-
ity measures and considered supply chain security when im-
plementing crypto updates. However, the extent of these mea-
sures varied largely. Only a few participants reported the
absence of any security and quality management practices:

“With that project where I’m co-developing, it’s full trust.
There’s no review because we trust each other that the code
that we are committing is good enough.” — P16

Testing and Analysis. Even if a QA department was not
present, participants used various techniques and measures to
ensure crypto update quality. The majority used automated
testing, including unit tests. In a few cases, the participants re-
ported utilizing static code analysis, vulnerability scans, fuzz
testing, or formal verification as specific security measures.
Additionally, some participants engaged in penetration testing,
either internally or externally. Some tested for non-security
metrics like performance, e.g., execution time. Others relied
on external software audits, compatibility assessments, or de-
pendency checks. However, not all participants had structured
QA. Especially in those cases, many participants mentioned
conducting basic functionality testing, e.g., by running the
software and manually debugging it.
Code Review. Many participants engaged in code reviews
for their crypto updates with varying strategies. However,
the strategies varied in how strict reviewing policies were.
A few participants adhered to a six-eye rule, as they argue
that only a second person reviewing code is not sufficient for
security-critical aspects like crypto:

“We have a six-eye rule because we are a security company. If
I make any changes, at least two other people have to review
and approve the changes, always.” — P12

Similarly, to increase the thoroughness of their review, a few
participants reviewed crypto source code printed on paper.
Generally, our impression was that participants put extra
scrutiny and time into reviewing crypto code.

Supply Chain Security. Developers had different levels of
awareness and employed various strategies to manage and
mitigate risks associated with third-party components from
their software supply chains. About half of the participants
generally used third-party dependencies, with some specifi-
cally mentioning third-party crypto libraries.

About half of the participants knew of supply chain security.
They followed various strategies to mitigate risks introduced
through their software supply chains. While a few used pack-
age managers to directly include third-party crypto libraries,
many participants reported forking existing crypto libraries
for their own projects or compiling them from source to pre-
vent issues with the update, e.g., by waiting before using the
novel upstream version:

“We make a fork of the same version of the snapshot of that
library. Then we compile it ourselves, and we integrate it into
our projects. We always have a mirror-reflected version on our
end.” — P8

A few participants modified third-party libraries, primarily
due to compatibility issues with their software. Additionally,
a few participants verified third-party components before use,
e.g., by checking the dependencies that libraries relied on or
required signed packages or certified manufacturers.

Key Takeaways: Security & Quality Assurance.

• Almost all participants reported some code security and quality
measures, e.g., automated testing, including unit tests.

• Many engaged in code reviews, with some following strict
policies like a six-eye rule.

• Supply chain security awareness and mitigation strategies var-
ied among participants.

4.2 Uniqueness of Cryptographic Updates

An overarching theme across interviews is that participants
generally consider crypto updates unique in several aspects
compared to general software updates. Participants’ update
processes varied, as they performed crypto updates in various
contexts, such as updating primitives, a library they maintain,
or a crypto dependency. Only a few participants reported han-
dling crypto updates and regular software updates the same.
Some participants reported that updating crypto implementa-
tions requires more effort than regular software updates and
is more critical:

“If you don’t update, for example, your PDF library, you may
have a logo positioned wrongly. But if you don’t update a
crypto library, you may have your data leaked.” — P13

Some participants highlighted the need for detailed review,
while others relied on a crypto library that first needed to be
reviewed and approved by a governmental department. A few
also found crypto updates more challenging, e.g., because of
having to consider legacy support:

“We have to narrow down to decide what those legacy devices
support. [. . .] Eventually, we go and say, “We’re not going to
support that crypto algorithm because it’s forcing that vendor
to actually fix and replace that software.”” — P4

Key Takeaways: Why Cryptographic Updates Stand Out.

• Participants considered crypto updates unique, more critical,
and more demanding than general software updates.

• Crypto updates required more effort and detailed review.
• Legacy support considerations and backward compatibility

complicated crypto updates.

4.3 Challenges of Updating Cryptography
Developers faced several challenges in multiple phases when
attempting crypto updates. We identified 13 challenges that
we illustrate in Table 2 and describe below in detail. Due to
these challenges, many participants reported failing to update
their crypto code at least once.
Problems Complicating Updates. Overall, we find that un-
structured crypto update processes (C6) are an overarching
issue that complicates crypto updates. The majority of devel-
opers mentioned backward compatibility issues (C4). Specif-
ically, a few participants highlighted problems with legacy
code (C5), crypto implementations, and systems. As a reason
for having to consider legacy support, a few participants noted
the long lifetime of embedded systems, which complicates
updates (C4):

“One problem is that a lot of the stuff is used in embedded
systems and basically systems that don’t change much. You’ve
got 10 or 15-year-old implementations.” — P18

Many participants reported that implementing crypto up-
dates led to non-functional software (C11), e.g., due to imple-
mentation bugs, incompatibilities between client and server,
or changes of supported algorithms. A few participants men-
tioned that updates affected other applications, leading to ad-
ditional complications (e.g., a crypto library used by multiple
internal software products led to breakage). Additionally, a
few pointed out a lack of information (C2) as a significant
challenge. A few participants were concerned that crypto
primitives or protocols might contain backdoors (C10):

“When updating crypto, my main concern is to be sure that the
crypto primitives or protocols do not contain backdoors for us,
which is very important.” — P5

Others mentioned problems with staying up to date (C1)
with CVE trackers, noting that it required too much effort to
filter out which CVEs affected the project’s security.

One participant mentioned that the crypto update changed
the workflow in the application and, therefore, affected the
user interface for password changes, which annoyed cus-
tomers (C12).

Delaying Updates. Participants reported various reasons for
delaying crypto updates. Some were unsure about the up-
date process or responsible parties due to a lack of organiza-
tional structures within the company or team, while others
postponed the crypto update until absolutely necessary. A
few expressed concerns about backward compatibility (C4),
making them hesitant to proceed. One participant cited the
task’s magnitude and lack of time or priority, particularly in
open-source or hobby projects. This issue also stemmed from
resource constraints within companies, e.g., missing support
through available experts. Finally, delaying a crypto update
could also result in skipping it, because an even newer version,
algorithm, or primitive became available.

Skipping Updates. A widespread reluctance to implement
crypto updates emerged among developers, driven by con-
cerns about customer pushback, security trade-offs, and per-
formance impacts. Some cited customer resistance to up-
grades, while others only updated when necessary for security,
especially regarding third-party libraries. Performance con-
cerns (C13) also played a role, with one participant noting
worse performance and a lack of algorithm support in a new
version. Another participant mentioned skipping standard
updates to maintain long-term stability for users, given the
frequent changes in standards.

Blockers Preventing Updates. Besides general challenges,
participants also encountered several hard blockers that could
prevent crypto updates entirely. Many participants mentioned
difficulties in understanding and learning crypto (C7), e.g.,
due to the complexity of crypto:

“While Bruce Schneier’s book, the Introduction to Cryptography,
made it seem like there are prepackaged blocks you can just
connect together like Lego, this is certainly not true. [. . .][For
example, there are] edge cases you have to be aware of.” — P9

Some reported that the absence of crypto experts (C8) in
their teams posed significant challenges: “As a small com-
pany, you don’t have the [. . .][crypto people] to do crypto
ourselves.” (P10). One participant shared that their implemen-
tation was vulnerable, but the client did not have the funding
to commission a crypto update. The frequent deprecation of
crypto standards and their rapid evolution (C3) created signif-
icant obstacles for many developers trying to maintain up-to-
date implementations. Furthermore, many were frustrated by
documentation problems (C9), with some noting inadequate
or missing documentation. Academic publications, though
recognized for their high quality, were often viewed as too
complex for practical implementation, while Request for Com-
ments (RFCs) received mixed reviews—generally more ac-
cessible than academic publications but varying significantly
in their developer-friendliness. One participant mentioned
that documentation often was not tailored for inexperienced
developers, while another found multiple library options and
configurations confusing without crypto expertise (C8).

Table 2: Identified challenges from the interviews mapped to the cryptographic update process phases and their relative prevalence.
Challenge Description Prevalence

Crypto Update Triggers
C1: Staying Up to Date Difficulty in keeping track of and filtering relevant CVEs and how to follow the right cryptographic experts.
C2: Lack of Information* Insufficient or unclear information about updates and their implications.

Crypto Update Objectives
C3: Changing Crypto Standards Changes in existing crypto standards and the emergence of new standards make it hard to keep up.

Planning
C4: Backward Compatibility of Cryptography Maintaining compatibility with old systems (e.g., embedded devices) complicates crypto updates and agility.
C5: Legacy Support Dealing with legacy code, cryptographic implementations, and systems makes updates difficult.
C6: Lack of Structured Processes* Absence of well-defined, structured processes to approach cryptographic updates.

Implemention
C7: Understanding Cryptography* Difficulty in learning and understanding complex cryptographic concepts.
C8: Lack of Cryptographic Expertise* Absence of cryptography experts in teams, especially in smaller companies.
C9: Documentation Issues Poor, missing, or hard-to-understand documentation, including academic publications.

Security & Quality Assurance Measures
C10: Trust in Third-Party Cryptography* Challenges in verifying and trusting third-party cryptography and its implementations.

Rollout & Release
C11: Technical Issues Cryptographic updates can cause breakages in the current application or affect other applications.
C12: User Interface Changes Cryptographic updates can affect user interfaces, potentially annoying customers.
C13: Performance Issues of Cryptography Cryptographic updates sometimes result in worse performance, leading to skipped updates.

Challenges marked with * were also present in other phases of the crypto update process to a lower degree.

Failing Updates. Participants described failed crypto up-
dates as changes to cryptosystems that lead to issues during
or after deployment. These failures stemmed from various
factors, including implementation errors (C11), compatibility
problems (C4), and security vulnerabilities. Some participants
reported incompatibilities with updated libraries, while others
discovered bugs post-release.

Failed crypto updates invariably required the update’s roll-
back, triggering time-consuming incident response processes
for many participants. For example, one participant noted that
they did not sufficiently test (Section 4.1.5) their updated cer-
tificate validation, which contained a bug (C11), and therefore
rolled it back before releasing an improved update later:

“We just said, no, no, it’s easiest to back it out now; we will fix
this and just do it again on the next release cycle. [. . .] We got
to roll that back. When something has been found out after
release that we did not catch beforehand.” — P2

Some updates also failed due to performance issues (C13)
or compatibility problems (C4) with older devices.

Key Takeaways: Challenges of Updating Cryptography.

• Backward compatibility was a major challenge.
• A of lack of crypto expertise and structured processes added

to the complexity of crypto updates.
• Technical issues, a negative performance impact, and an impact

on end-user usability can lead to failed or delayed updates.

4.4 Wishes for Cryptographic Updates
In the interviews, we asked developers about their wishes and
suggestions for improving crypto code updates.
Awareness, Education, and Practice. Many participants
wished for more awareness, education, and practice to up-
date crypto implementations, especially those who updated
crypto for the first time. For example, one participant reported
that new employees get a crypto onboarding. Similarly, a few

developers emphasized the importance of specialized training
to ensure code safety and security. They also stressed the
need for continuous education to stay updated, recognizing
the field’s constant evolution: “Crypto implementations are
getting enhanced and refined every passing day, so [develop-
ers] need to be aware of new challenges.” (P6).

Need for Cryptographic Expertise. Besides raising aware-
ness and providing education, some participants identified the
need for dedicated crypto experts or staff within their teams
having the needed background in crypto. These experts should
provide specialized knowledge and support, ensuring crypto
updates are implemented correctly and efficiently. Overall,
many participants often felt insufficiently prepared to imple-
ment and deploy crypto updates.

Resources and Documentation. Many participants sug-
gested extending and improving documentation, for exam-
ple, by adding more examples or more precise error messages,
making them developer-friendly. Moreover, a few participants
expressed the need for more examples and resources on the
internet, such as better access to fixes and information on
vulnerabilities. Finally, a few participants suggested that stan-
dards should provide accessible change logs.

API and Library Improvements. A few developers ad-
vocated streamlining crypto libraries to better support non-
experts, emphasizing the criticality of stable APIs, and also
complained about usability:

“Any crypto primitives and libraries already have a very high
bar to entry, both due to complexity and because programmers
have been told for decades that they shouldn’t touch these
things unless they know exactly what they’re doing.” — P11

Consequently, they suggested that algorithm, standard, or li-
brary updates should have minimal impact on developer us-
ability. Initially, selecting a reliable crypto library is crucial,
as participants reported that poor choices lead to challenges

during the update process, including breakage and backward
incompatibility (Section 4.3).

Testing and Verification. Other participants mentioned the
need for easier testing and verification of crypto updates. A
few participants indicated that cryptanalysis and formal veri-
fication should be more accessible or stressed the criticality
of penetration testing of crypto implementations and updates.
Some participants emphasized the need for increased automa-
tion in testing and vulnerability detection:

“An eternal wish for every security developer is a better-
automated analysis of the code to try and detect vulnerabili-
ties.” — P18

Best Practices. Regarding approaching crypto updates in
general, many participants emphasized the need for well-
defined best practices for a structured crypto update process
due to the problems they encountered and lacking best prac-
tices: “We didn’t have any real best practices regarding secu-
rity audits or security updates.” (P7). However, while partici-
pants desired best practices, they did not propose what such
best practices should entail, except that these would need to
be clearly specified and communicated.

Key Takeaways: Wishes for Cryptography Updates.

• Many participants wished for better awareness, education, and
practice with updating crypto.

• Dedicated team members with crypto expertise and improved
documentation and resources were desired.

• Easy-to-use, up-to-date, and well-documented crypto libraries
and enhanced testing tools were suggested.

5 Discussion

Below, we discuss our results in the context of our RQs, pro-
vide recommendations, put our work in context with related
work, and compare crypto with security and general software
updates to illustrate their distinct characteristics.

Awareness (RQ1). While crypto updates can be highly
security-critical, especially for vulnerabilities whose fixes are
time-critical, most participants lacked information sources
to stay up to date with crypto updates. They tried to utilize
various channels. However, many participants were mainly
informed by peers, e.g., through mailing lists or colleagues
and community members (Section 4.1.1). One participant
mentioned to “follow the right people” (P13), which may be
hard to find. Even though national agencies or standardization
organizations, such as NIST, provide information about up-
coming cryptographic updates [71], e.g., deprecations and key
lengths, our participants did not consider those. This confirms
the limited relevance of national agencies and standardiza-
tion organizations for software development practices [72].
Despite security shortcomings [73], our participants relied
on social media and online forums (e.g., StackOverflow or
Reddit) instead. Our findings suggest that many developers
have limited awareness of the cryptographic lifecycle. Hence,

we suggest better tool support, such as static code analysis
for cryptographic implementations, to identify and notify de-
velopers in case their cryptographic code is vulnerable or
outdated [74]. Additionally, the wider adoption of existing
solutions, for example, IDEs that warn developers when they
use deprecated crypto defaults or deprecated and insecure
algorithms [75, 76], seems promising.
Objectives of Cryptographic Updates (RQ2). We iden-
tified several objectives for crypto updates (Section 4.1.2).
Vulnerability fixes and preventive updates were the most im-
portant. Vulnerability fixes require immediate action by up-
dating the implementation and releasing the fix. Preventive
updates aim to improve security for future security issues (e.g.,
advances in crypto analysis or quantum computers [77]). Be-
sides that, changes in crypto standards and other non-security
reasons, like crypto library performance, features, or usability,
are reasons for a crypto update. While all these are reasons to
update crypto implementations, not all updates are deployed,
e.g., P8 did not perform a crypto update because it did not
improve security. Finally, the question remains whether de-
velopers and organizations see the need for a crypto update or
not. With this question in mind, several challenges (RQ4) and
a lack of incentives might prevent potential crypto updates.
Cryptographic Update Processes (RQ3). While all partic-
ipants described their approach to crypto updates, we could
not identify structured update processes. Due to the perceived
criticality of crypto updates, what seems to be structured—but
also pertains to the general software development lifecycle—
are security code reviews and software testing (Section 4.1.5).
Hence, our results align with Haney et al.’s who found “rigor-
ous development and testing practices” among organizations
that develop cryptographic products [28].

Given the many challenges (Section 4.3) and especially the
criticality of crypto updates, structured processes are essential
for improved security. A structured process could also ensure
preventively updating crypto implementations ahead of time,
e.g., increasing key sizes or switching to PQC, before becom-
ing urgent security issues [6, 78]. However, our participants
described highly individual crypto update experiences and
challenges. Hence, one process might not fit all needs.

The involvement of stakeholders was highly individual for
the participants’ projects. While some participants worked
in a larger team, others were solo-developers. Commonly,
participants called for team members with dedicated crypto
expertise—often finding their personal crypto knowledge in-
sufficient [6, 7]. Unfortunately, this might be unrealistic for
solo developers or projects with limited human or monetary
resources [79]. A typical pattern reported was having a secu-
rity or crypto advocate (often our interviewee) who usually
initiated and performed the crypto update [28]. Without some-
one taking this role, crypto code updates did not seem to
happen. Therefore, we recommend assigning this role explic-
itly within a team. Fischer et al. identified similar issues for
the crypto ecosystem stakeholders [34].

Challenges (RQ4). Our participants described many chal-
lenges when updating crypto implementations (Section 4.3).
Backward compatibility (C4) was the major challenge for our
participants; consequently, some decided to delay the update
due to compatibility considerations. In case of preventive
updates, developers depend on their customers and (legacy)
hardware, having to consider both and backward compatibil-
ity. However, it is even more challenging that their customers
will only notice an update if it fails because otherwise (with-
out an update), the software continues to run. Another chal-
lenge is trust in code and third parties (C10). One participant
mentioned that developers must reconsider every update of a
third-party library, as it might contain a backdoor [80, 81] or
vulnerability [82]. One strategy is to skip updates if they are
not (security) critical. Consequently, developers might skip
multiple updates, potentially making necessary future updates
more complex. Trust in the software supply chain is a general
challenge [83]. When updating a crypto library, developers
should be aware of software provenance, e.g., code from new
developers or new standards for parameters or algorithms.

Participants developing crypto libraries have delayed updat-
ing to implement standard changes because they believe that
standards change too frequently to incorporate every modifi-
cation. The IETF publishes hundreds of RFCs and thousands
of drafts every year [84]. This makes keeping up hard for de-
velopers and libraries, so we can support similar findings on
challenges surrounding crypto standards [35]. In that sense,
challenges through crypto standard updates seem to translate
to challenges in updating crypto implementations.

5.1 Recommendations
Our results imply that external factors primarily trigger crypto
updates. Identifying the right information sources for crypto
updates is challenging, and there seems to be no single infor-
mation source for all developers. However, we recommend
that junior developers (especially solo developers) working
with cryptography find and follow crypto experts that are crit-
ical for their projects, e.g., on blogs, social media, GitHub, or
mailing lists. For those with more crypto expertise, we recom-
mend sharing their rationales for and experiences with crypto
updates. Established developers could share their professional
network such that new developers can “follow the right peo-
ple” (P13) more easily. Since software projects are diverse,
suggesting an overall update process is difficult; however, we
encourage developers to establish processes for long-term
preventive updates, e.g., crypto transitions, and to provide
update roadmaps for affected stakeholders.

Consider Cryptographic Updates Periodically. As dis-
cussed before, cryptographic advances require deprecating
crypto algorithms, primitives, and protocols regularly and up-
dating them with state-of-the-art crypto for improved security.
We recommend regularly revisiting crypto implementations
to check whether they need to be updated and not miss a nec-

essary transition (e.g., from SHA-1 to SHA-3). Besides newly
discovered vulnerabilities, crypto and related standards evolve
over years or decades (Section 4.1). Checking for updates ev-
ery few months or years is likely sufficient when updating a
crypto standard. We recommend that crypto is a permanent
technical liability that developers should treat as a recurring
task.

For Developers Using Cryptographic Implementations.
As participants experienced major challenges with back-
ward compatibility and breakages after a crypto update (Sec-
tion 4.3), we suggest considering potential crypto updates in
the initial project design phase. Ideally, developers create a
plan for approaching future updates to reduce the effort re-
quired and enhance flexibility, i.e., crypto agility [85]. When
starting a new project, developers should select reliable crypto
libraries with robust APIs. They should examine different
libraries and review their histories and any issues reported
by other developers to avoid challenges when updating the
crypto implementation in the future (Section 4.3). By incor-
porating this into the initial design, developers can ensure
their software’s crypto remains updatable, reducing the time
and resources needed for future crypto updates and allowing
swift responses to emerging threats. Finally, as crypto updates
are perceived as challenging and tedious, developers should
initially use state-of-the-art and no outdated crypto in their
projects to prevent having to update in the near future.

For Developers Providing Cryptographic Implemena-
tions. Secure defaults for crypto libraries are critical, as they
support non-experts to use crypto securely (Section 4.4), e.g.,
without having to choose parameters. While this is desirable,
the defaults and deprecated algorithms also might need to
be updated at some point. Changing defaults or deprecating
algorithms also affects the crypto libraries’ code bases, which
can be an indicator of up-to-date crypto libraries, e.g., test
cases with deprecated certificates:

“We wanted to remove support for MD5, and all old tests had
been written using MD5 15 years ago. We had to regenerate
all the tests so that we could get rid of MD5.” — P2

To prevent this, we recommend leveraging test suites before
performing a crypto update. Otherwise, the update might
cause issues for downstream developers using the library.
This example outlines that updates should be considered early
in a library’s cryptographic lifecycle and communicated to
its users. We recommend that library developers document
changes and provide actionable update recommendations, e.g.,
in changelogs, as participants suggested. However, manually
checking changelogs might be too tedious for downstream
library users. Instead, automatic recognition and perform-
ing updates (semi-)automatically is desirable. For example, a
large-scale tool similar to GitHub’s Dependabot that recog-
nizes outdated crypto and proposes an update.

For Upcoming PQC Updates. Updating to post-quantum
crypto poses significant challenges due to the generally lim-

ited experiences with PQC. However, experts expect the tran-
sition to be time-consuming and complex. Multiple updates
and adaptations are likely as PQC standards evolve. Conse-
quently, developers should plan for significant resources to
accommodate the PQC transition by, e.g., reading and ap-
plying documents from NIST [86], because those are often
complicated and unclear when it comes to actionable recom-
mendations.
For Cryptographic Standards. Participants requested
change logs for standards, which would be highly benefi-
cial for developers who create reference implementations or
maintain crypto libraries. Hence, we support a similar recom-
mendation by Huaman et al. [35]. This would help developers
stay informed about updates and better support their work by
clearly showing what changes have occurred. For example,
the IETF Datatracker provides a diff-style view for corrected
errata. For updated or outdated standards, such a diff does
not exist and might not make sense as they are different RFCs,
but they require detailed update notes to summarize changes.
Additionally, participants considered StackOverflow rather
than crypto standards. For instance, P18 said:

“one of the problems with a lot of these standards is that there
might be things the latest thesis was like 130 pages long, in-
cluding things that no one will ever use.” — P18

Others mentioned a lack of education to follow and compre-
hend crypto standards (Section 4.3). We therefore recommend
that crypto standard documents should be shipped with action-
able guidelines, simplified explanations, and implementation
examples to prevent developers from using StackOverflow,
increasing the risk of vulnerable implementations.

5.2 Comparing Cryptographic Updates
to Regular and Security Updates

Overall, crypto updates can be considered a special case of
security updates and share some commonalities with general
and security software updates. Nonetheless, updating crypto
presents extra obstacles that must be taken into account in
comparison to security and general software updates [24–26]
(Section 2).

First, crypto updates need more review and testing to
identify and prevent subtle vulnerabilities (Section 4.2, Sec-
tion 4.1.5). Especially for crypto libraries, misuse is a sig-
nificant challenge and is known to weaken security [7], and
it might also happen in updates. Introducing bugs in regu-
lar software updates might have no or less severe security
consequences.

Second, crypto implementations likely require updates due
to future deprecation of current state-of-the-art crypto. Such
updates are mainly long-term, e.g., transition to PQC, and
require skill and knowledge, e.g., to implement new crypto-
graphic approaches. This also means to plan cryptographic
updates carefully. Estimating consequences of crypto and se-
curity updates requires specialized knowledge. In both cases,

developers’ fears of breaking software can lead to delayed or
skipped updates [87].

Third, updating crypto means deprecating crypto, while
legacy support might be critical at the same time (C4 & C5 in
Table 2). Backward compatibility is crucial for ensuring func-
tionality and a challenge for all types of updates—including
crypto updates, as our participants mentioned (Section 4.3).
For crypto specifically, hardware constraints like limited CPU
power may force the continued use of older, weaker algo-
rithms when updates are impossible. Legacy systems of-
ten hinder timely crypto updates. Early planning and crypto
agility are crucial for smooth transitions during device re-
placements or upgrades [1].

6 Conclusion

We conducted 21 semi-structured interviews with experienced
developers to study their experiences and challenges around
updating crypto implementations. They reported that updat-
ing crypto code was complicated due to their limited crypto
expertise, legacy support issues, and missing helpful and ac-
tionable documentation. A cornerstone for a successful crypto
update was the availability of crypto experts and documents
comprehensible for non-crypto-experts.

Our results illustrate technical challenges and challenges
in the broader development life cycle. The benefits of crypto
updates were hard to measure and unclear, especially for
long-term precautionary crypto updates (e.g., the transition to
PQC). Hence, many participants reported that organizations
or developers might skip or delay crypto updates. Some par-
ticipants consult academic publications for updates, despite
the process being time-consuming. Making crypto research
more accessible could improve its integration into products.
Many crypto implementations will eventually become inse-
cure, requiring projects to transition to PQC. This will affect
many developers and users—it will likely be the most sig-
nificant precautionary crypto update in the next decade. Our
results demonstrate that updating crypto implementations is a
regular and challenging task. Hence, better developer support
for the PQC transition is essential for improving future crypto
implementations and aids broader software security.

Acknowledgments

We sincerely thank all interviewees for their valuable support
and contributions to our research. We appreciate the con-
structive feedback from the anonymous reviewers and our
shepherd.

This research was funded by VolkswagenStiftung Nieder-
sächsisches Vorab (ZN3695). Any findings and opinions ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

Ethics Considerations

Our study was approved by the ethical review board (ERB)
(IRB equivalent) of our organization. Our research is consis-
tent with the standards defined in the Menlo Report [88]. All
collected data was processed according to the GDPR. We
explicitly stated the information about data handling to our
participants. In addition, we obtained informed consent from
all participants in the pre-survey and reconfirmed their per-
mission for both the interview and the audio recording before
starting the interview. We always allowed the interviewees to
skip questions or end the interview anytime for any reason.
If participants did not read the consent form initially, we re-
peated this information directly before the interview study.
The pre-survey consent form, which also served as the written
consent form for the complete study, is part of the replica-
tion package (Section Open Science). If interview recordings
contained personally identifiable or sensible information, we
manually cut out the part of the interview that contained it
before handing the recording over to the GDPR-compliant
transcription service.

Open Science

In accordance with ethical research practices and data protec-
tion regulations, we have chosen not to share the full interview
transcripts as part of our dataset. This decision is rooted in our
commitment to safeguarding participants’ privacy and uphold-
ing their right to data protection. The sensitive nature of the
information shared during interviews, which often includes
personal experiences and opinions, necessitates a cautious
approach to data dissemination. Maintaining participant con-
fidentiality is paramount in qualitative research, as it fosters
trust and encourages open, honest responses. By withholding
raw transcripts, we mitigate the risk of participant identifi-
cation through contextual details or unique phrasing, even
if names and obvious identifiers are removed. Rather than
providing entire transcripts, we offer our findings via care-
fully curated, anonymized quotes and thematic analyses. This
approach enables us to effectively communicate the core of
our research while honoring the privacy and dignity of our
participants.
Availability. To support transparency, replication, and meta-
research, we provide the following research artifacts in an
online replication package: (1) The consent form, (2) the pre-
questionnaire, (3) the interview guide, (4) the codebook, and
(5) the recruitment materials. The artifacts can be found at:
https://doi.org/10.6084/m9.figshare.25975120

References

[1] David Ott, Kenny Paterson, and Dennis Moreau. “Where Is the Re-
search on Cryptographic Transition and Agility?” In: Communica-
tions of the ACM 66.4 (Mar. 2023), pp. 29–32.

[2] Brian LaMacchia. “The long road ahead to transition to post-quantum
cryptography”. In: Communications of the ACM 65.1 (Dec. 2021),
pp. 28–30.

[3] CVE-2021-44228. https://nvd.nist.gov/vuln/detail/CVE-
2021-44228, as of February 7, 2025. 2021.

[4] SHA-3 standard:: permutation-based hash and extendable-output
functions. Federal Information Processing Standards Publications
(FIPS PUBS) 202. National Institute of Standards and Technology
(U.S.), 2015.

[5] Emily Grumbling and Mark Horowitz, eds. Quantum Computing:
Progress and Prospects. National Academies Press, Mar. 2019.

[6] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von
Zezschwitz, and Matthew Smith. “"If you want, I can store the en-
crypted password": A Password-Storage Field Study with Freelance
Developers”. In: Proc. 2019 CHI Conference on Human Factors in
Computing Systems. CHI ’19. Glasgow, Scotland, UK: ACM, 2019,
pp. 1–12.

[7] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel,
Doowon Kim, Michelle L Mazurek, and Christian Stransky. “Compar-
ing the usability of cryptographic apis”. In: 2017 IEEE Symposium
on Security and Privacy (SP). IEEE. 2017, pp. 154–171.

[8] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir,
Michelle L Mazurek, and Sascha Fahl. “Developers need support, too:
A survey of security advice for software developers”. In: 2017 IEEE
Cybersecurity Development (SecDev). IEEE. 2017, pp. 22–26.

[9] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. NaCl: Net-
working and Cryptography library. Version 2016.03.15. 2008. URL:
https://nacl.cr.yp.to/index.html (visited on 05/10/2024).

[10] US Communications Sector Coordinating Council. The Engineer Who
Cried Quantum. https://www.comms-scc.org/wp-content/
uploads/2023/08/The-Engineer-Who-Cried-Quantum2.pdf,
as of February 7, 2025. July 2023.

[11] Apple Security Engineering and Architecture (SEAR). iMessage with
PQ3: The new state of the art in quantum-secure messaging at scale.
https://security.apple.com/blog/imessage- pq3/, as of
February 7, 2025. Feb. 2024.

[12] Module-lattice-based key-encapsulation mechanism standard. Fed-
eral Information Processing Standards Publications (FIPS PUBS) 203.
National Institute of Standards and Technology (U.S.), Aug. 2024.

[13] Module-lattice-based digital signature standard. Federal Informa-
tion Processing Standards Publications (FIPS PUBS) 204. National
Institute of Standards and Technology (U.S.), Aug. 2024.

[14] Stateless hash-based digital signature standard. Federal Informa-
tion Processing Standards Publications (FIPS PUBS) 205. National
Institute of Standards and Technology (U.S.), Aug. 2024.

[15] David Adrian, Bob Beck, David Benjamin, and Devon O’Brien. Ad-
vancing Our Amazing Bet on Asymmetric Cryptography. https:
//blog.chromium.org/2024/05/advancing- our- amazing-
bet-on-asymmetric.html, as of February 7, 2025. 2024.

[16] Nikhil Patnaik, Joseph Hallett, and Awais Rashid. “Usability Smells:
An Analysis of Developers’ Struggle With Crypto Libraries.” In:
SOUPS@ USENIX Security Symposium. 2019.

[17] Romain Robbes, Mircea Lungu, and David Röthlisberger. “How do
developers react to API deprecation? The case of a Smalltalk ecosys-
tem”. In: Proc. ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. 2012, pp. 1–11.

[18] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio,
and Katsuro Inoue. “Do developers update their library dependencies?
An empirical study on the impact of security advisories on library
migration”. In: Empirical Software Engineering 23 (2018), pp. 384–
417.

https://doi.org/10.6084/m9.figshare.25975120
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nacl.cr.yp.to/index.html
https://www.comms-scc.org/wp-content/uploads/2023/08/The-Engineer-Who-Cried-Quantum2.pdf
https://www.comms-scc.org/wp-content/uploads/2023/08/The-Engineer-Who-Cried-Quantum2.pdf
https://security.apple.com/blog/imessage-pq3/
https://blog.chromium.org/2024/05/advancing-our-amazing-bet-on-asymmetric.html
https://blog.chromium.org/2024/05/advancing-our-amazing-bet-on-asymmetric.html
https://blog.chromium.org/2024/05/advancing-our-amazing-bet-on-asymmetric.html

[19] Anand Ashok Sawant, Mauricio Aniche, Arie van Deursen, and Al-
berto Bacchelli. “Understanding developers’ needs on deprecation
as a language feature”. In: Proc. 40th International Conference on
Software Engineering. 2018, pp. 561–571.

[20] Abbas Javan Jafari, Diego Elias Costa, Emad Shihab, and Rabe Ab-
dalkareem. “Dependency Update Strategies and Package Characteris-
tics”. In: ACM Trans. Softw. Eng. Methodol. 32.6 (Sept. 2023).

[21] Xiaoxing Ma, Tianxiao Gu, and Wei Song. “Software Is Not Soft”.
In: Engineering Trustworthy Software Systems. Ed. by Jonathan P.
Bowen, Zhiming Liu, and Zili Zhang. Cham: Springer International
Publishing, 2018, pp. 143–175.

[22] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael
Backes. “Keep me Updated: An Empirical Study of Third-Party Li-
brary Updatability on Android”. In: Proc. 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. 2017, pp. 2187–
2200.

[23] Joël Cox, Eric Bouwers, Marko Van Eekelen, and Joost Visser.
“Measuring dependency freshness in software systems”. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engi-
neering. Vol. 2. IEEE. 2015, pp. 109–118.

[24] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld,
and M. Jazayeri. “Challenges in software evolution”. In: Eighth Inter-
national Workshop on Principles of Software Evolution (IWPSE’05).
2005, pp. 13–22.

[25] Iulian Neamtiu, Guowu Xie, and Jianbo Chen. “Towards a better
understanding of software evolution: an empirical study on open-
source software”. In: Journal of Software: Evolution and Process
25.3 (2013), pp. 193–218.

[26] Mívian M. Ferreira, Mariza Andrade da Silva Bigonha, and Kecia
A. M. Ferreira. “On The Gap Between Software Maintenance Theory
and Practitioners’ Approaches”. In: CoRR abs/2104.03824 (2021).

[27] Julie M. Haney, Simson L Garfinkel, and Mary F Theofanos. “Orga-
nizational practices in cryptographic development and testing”. In:
2017 IEEE Conference on Communications and Network Security
(CNS). IEEE. 2017, pp. 1–9.

[28] Julie M. Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard
Prettyman. “"We make it a big deal in the company": Security
Mindsets in Organizations that Develop Cryptographic Products.”
In: SOUPS@ USENIX Security Symposium. 2018, pp. 357–373.

[29] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. “To
react, or not to react: Patterns of reaction to API deprecation”. In:
Empirical Software Engineering 24 (2019), pp. 3824–3870.

[30] Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai. “Exploring How Dep-
recated Python Library APIs Are (Not) Handled”. In: Proc. 28th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE
2020. Virtual Event, USA: ACM, 2020, pp. 233–244.

[31] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. “On
the reaction to deprecation of clients of 4 + 1 popular Java APIs and
the JDK”. In: Empirical Software Engineering 23 (2018), pp. 2158–
2197.

[32] Peter Leo Gorski, Yasemin Acar, Luigi Lo Iacono, and Sascha Fahl.
“Listen to Developers! A Participatory Design Study on Security
Warnings for Cryptographic APIs”. In: Proc. 2020 CHI Conference
on Human Factors in Computing Systems. CHI ’20. New York, NY,
USA: ACM, 2020, pp. 1–13.

[33] David Ott, Christopher Peikert, and other workshop participants. Iden-
tifying Research Challenges in Post Quantum Cryptography Migra-
tion and Cryptographic Agility. 2019.

[34] Konstantin Fischer, Ivana Trummová, Phillip Gajland, Yasemin Acar,
Sascha Fahl, and Angela Sasse. “On The Challenges of Bringing
Cryptography from Papers to Products: Results from an Interview
Study with Experts”. In: 33rd USENIX Security Symposium, USENIX
Security ’24, Philadelphia, PA, USA, August 14-16, 2024. USENIX,
Aug. 2024.

[35] Nicolas Huaman, Jacques Suray, Jan H. Klemmer, Marcel Fourné,
Sabrina Klivan, Ivana Trummová, Yasemin Acar, and Sascha Fahl.
““You have to read 50 different RFCs that contradict each other”: An
Interview Study on the Experiences of Implementing Cryptographic
Standards”. In: 33rd USENIX Security Symposium (USENIX Security
24). USENIX, Aug. 2024, pp. 7249–7266.

[36] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Ke Tian, Miles Frantz,
Na Meng, Barton P Miller, Fahad Shaon, Murat Kantarcioglu, and
Danfeng Yao. “Deployment-quality and Accessible Solutions for
Cryptography Code Development”. In: Proc. Tenth ACM Conference
on Data and Application Security and Privacy. 2020, pp. 174–176.

[37] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. “An empirical study of cryptographic misuse in android
applications”. In: Proc. 2013 ACM SIGSAC Conference on Computer
and Communications Security. 2013, pp. 73–84.

[38] Jun Gao, Pingfan Kong, Li Li, Tegawendé F Bissyandé, and Jacques
Klein. “Negative results on mining crypto-api usage rules in android
apps”. In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE. 2019, pp. 388–398.

[39] Anna-Katharina Wickert, Lars Baumgärtner, Florian Breitfelder, and
Mira Mezini. “Python Crypto Misuses in the Wild”. In: Proc. 15th
ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM). 2021, pp. 1–6.

[40] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan
Boneh, and Vitaly Shmatikov. “The most dangerous code in the world:
validating SSL certificates in non-browser software”. In: Proc. 2012
ACM Conference on Computer and Communications Security. 2012,
pp. 38–49.

[41] Harjot Kaur, Sabrina Amft, Daniel Votipka, Yasemin Acar, and Sascha
Fahl. “Where to Recruit for Security Development Studies: Compar-
ing Six Software Developer Samples”. In: 31st USENIX Security
Symposium, USENIX Security ’22, Boston MA, USA, August 10-12,
2022. USENIX, Aug. 2022.

[42] Sabrina Amft, Sandra Höltervennhoff, Rebecca Panskus, Karola
Marky, and Sascha Fahl. “Everyone for Themselves? A Qualitative
Study about Individual Security Setups of Open Source Software
Contributors”. In: 45th IEEE Symposium on Security and Privacy,
IEEE S&P 2024, May 20-23, 2024. IEEE Computer Society, May
2024.

[43] Sandra Höltervennhoff, Noah Wöhler, Arne Möhle, Marten Oltrogge,
Yasemin Acar, Oliver Wiese, and Sascha Fahl. “A Mixed-Methods
Study on User Experiences and Challenges of Recovery Codes for
an End-to-End Encrypted Service”. In: 33rd USENIX Security Sym-
posium, USENIX Security ’24, Philadelphia, PA, USA, August 14-16,
2024. USENIX, Aug. 2024.

[44] Alexander Krause, Jan H. Klemmer, Nicolas Huaman, Dominik
Wermke, Yasemin Acar, and Sascha Fahl. “Pushed by Accident: A
Mixed-Methods Study on Strategies of Handling Secret Information
in Source Code Repositories”. In: 32nd USENIX Security Sympo-
sium (USENIX Security 23). Anaheim, CA: USENIX, Aug. 2023,
pp. 2527–2544.

[45] Dominik Wermke, Noah Wöhler, Jan H. Klemmer, Marcel Fourné,
Yasemin Acar, and Sascha Fahl. “Committed to Trust: A Qualitative
Study on Security & Trust in Open Source Software Projects”. In:
43rd IEEE Symposium on Security and Privacy, IEEE S&P 2022,
May 22-26, 2022. IEEE Computer Society, May 2022.

[46] Leo A. Goodman. “Snowball Sampling”. In: The Annals of Mathe-
matical Statistics 32.1 (1961), pp. 148–170.

[47] Bruce Schneier. Worldwide Encryption Product Survey Data. https:
/ / www . schneier . com / wp - content / uploads / 2016 / 02 /
worldwide- encryption- product- survey- data.xls (visited
on 05/05/2023.

[48] GitHub. GitHub Acceptable Use Policies. https://docs.github.
com/en/site- policy/acceptable- use- policies/github-
acceptable-use-policies (visited on 05/05/2023.

[49] Emilee Rader, Samantha Hautea, and Anjali Munasinghe. “"I Have a
Narrow Thought Process": Constraints on Explanations Connecting
Inferences and Self-Perceptions”. In: 16th Symposium on Usable
Privacy and Security (SOUPS 2020). USENIX, Aug. 2020, pp. 457–
488.

[50] RedHat. What is software supply chain security? https://www.
redhat . com / en / topics / security / what - is - software -
supply-chain-security (visited on 14/05/2024.

[51] Zoom Video Communications, Inc. Zoom. https://zoom.us/.

[52] BigBlueButton Inc. Big Blue Button. https://bigbluebutton.
org/.

[53] Amberscript. 2024. URL: https://www.amberscript.com.

[54] Melanie Birks and Jane Mills. Grounded theory: A practical guide.
Sage, 2015.

[55] Cathy Urquhart. Grounded theory for qualitative research: A practical
guide. Sage, 2012.

[56] Greg Guest, Kathleen M. MacQueen, and Emily E. Namey. Applied
Thematic Analysis. SAGE Publications, 2012.

[57] Matthew B. Miles and A. Michael Huberman. Qualitative data analy-
sis: An expanded sourcebook. 2nd ed. Sage Publications, 1994.

[58] Collins W. Munyendo, Yasemin Acar, and Adam J. Aviv. “"In Eighty
Percent of the Cases, I Select the Password for Them": Security
and Privacy Challenges, Advice, and Opportunities at Cybercafes
in Kenya”. In: 2023 IEEE Symposium on Security and Privacy (SP).
2023, pp. 570–587.

[59] Rami Sammak, Anna Lena Rotthaler, Harshini Sri Ramulu, Dominik
Wermke, and Yasemin Acar. “Developers’ Approaches to Software
Supply Chain Security: An Interview Study”. In: Proc. 2024 Work-
shop on Software Supply Chain Offensive Research and Ecosystem
Defenses. SCORED ’24. Salt Lake City, UT, USA: ACM, Nov. 2024,
pp. 56–66.

[60] Rodrigo Werlinger, Kasia Muldner, Kirstie Hawkey, and Konstantin
Beznosov. “Preparation, detection, and analysis: the diagnostic work
of IT security incident response”. In: Information Management &
Computer Security 18.1 (Mar. 2010). Ed. by Steven M. Furnell,
pp. 26–42.

[61] Hugh Beyer and Karen Holtzblatt. Contextual Design: Defining
Customer-Centered Systems. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 1997.

[62] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. “Reliabil-
ity and Inter-Rater Reliability in Qualitative Research: Norms and
Guidelines for CSCW and HCI Practice”. In: Proc. ACM on Human-
Computer Interaction 3.CSCW (2019), pp. 1–23.

[63] Stefan Albert Horstmann, Samuel Domiks, Marco Gutfleisch, Mindy
Tran, Yasemin Acar, Veelasha Moonsamy, and Alena Naiakshina.
““Those things are written by lawyers, and programmers are reading
that.” Mapping the Communication Gap Between Software Devel-
opers and Privacy Experts”. In: Proceedings on Privacy Enhancing
Technologies. 2024.

[64] Philip Klostermeyer, Sabrina Amft, Sandra Höltervennhoff, Alexan-
der Krause, Niklas Busch, and Sascha Fahl. “Skipping the Security
Side Quests: A Qualitative Study on Security Practices and Chal-
lenges in Game Development”. In: Proc. 2024 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’24. Salt
Lake City, UT, USA: ACM, 2024, pp. 2651–2665.

[65] Juliane Schmüser, Philip Klostermeyer, Kay Friedrich, and Sascha
Fahl. ““I’m pretty expert and I still screw it up”: Qualitative Insights
into Experiences and Challenges of Designing and Implementing
Cryptographic Library APIs”. In: 2025 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, May 2025, pp. 26–26.

[66] Benjamin Saunders, Julius Sim, Tom Kingstone, Shula Baker, Jackie
Waterfield, Bernadette Bartlam, Heather Burroughs, and Clare Jinks.
“Saturation in qualitative research: exploring its conceptualization and
operationalization”. In: Quality & quantity 52 (2018), pp. 1893–1907.

[67] Warda Usman, Jackie Hu, McKynlee Wilson, and Daniel Zappala.
“Distrust of big tech and a desire for privacy: Understanding the
motivations of people who have voluntarily adopted secure email”.
In: Nineteenth Symposium on Usable Privacy and Security (SOUPS
2023). Anaheim, CA: USENIX, Aug. 2023, pp. 473–490.

[68] Shikun Zhang, Yuanyuan Feng, Yaxing Yao, Lorrie Faith Cranor,
and Norman Sadeh. “How usable are ios app privacy labels?” In:
Proceedings on Privacy Enhancing Technologies (2022).

[69] Pardis Emami-Naeini, Henry Dixon, Yuvraj Agarwal, and Lorrie Faith
Cranor. “Exploring How Privacy and Security Factor into IoT Device
Purchase Behavior”. In: Proc. 2019 CHI Conference on Human
Factors in Computing Systems. CHI ’19. Glasgow, Scotland, UK:
ACM, 2019, pp. 1–12.

[70] Hana Habib, Sarah Pearman, Jiamin Wang, Yixin Zou, Alessandro
Acquisti, Lorrie Faith Cranor, Norman Sadeh, and Florian Schaub.
“"It’s a scavenger hunt": Usability of Websites’ Opt-Out and Data
Deletion Choices”. In: Proc. 2020 CHI Conference on Human Factors
in Computing Systems. CHI ’20. Honolulu, HI, USA: ACM, 2020,
pp. 1–12.

[71] Elaine Barker and Allen Roginsky. Transitioning the use of crypto-
graphic algorithms and key lengths. NIST Special Publication 800-
131A Revision 2. National Institute of Standards and Technology,
Mar. 2019.

[72] Jan H. Klemmer, Marco Gutfleisch, Christian Stransky, Yasemin Acar,
M. Angela Sasse, and Sascha Fahl. “"Make Them Change it Every
Week!": A Qualitative Exploration of Online Developer Advice on
Usable and Secure Authentication”. In: Proc. 2023 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’23.
Copenhagen, Denmark: ACM, 2023, pp. 2740–2754.

[73] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle
L. Mazurek, and Christian Stransky. “You Get Where You’re Looking
for: The Impact of Information Sources on Code Security”. In: 2016
IEEE Symposium on Security and Privacy (SP). 2016, pp. 289–305.

[74] Goran Piskachev, Matthias Becker, and Eric Bodden. “Can the con-
figuration of static analyses make resolving security vulnerabilities
more effective? - A user study”. In: Empirical Software Engineering
28.5 (Sept. 2023).

[75] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini,
Eric Bodden, Florian Göpfert, Felix Günther, Christian Weinert,
Daniel Demmler, and Ram Kamath. “CogniCrypt: Supporting de-
velopers in using cryptography”. In: 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 2017,
pp. 931–936.

[76] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael
Backes, Charles Weir, and Sascha Fahl. “A Stitch in Time: Supporting
Android Developers in WritingSecure Code”. In: Proc. 2017 ACM
SIGSAC Conference on Computer and Communications Security.
CCS ’17. Dallas, Texas, USA: ACM, 2017, pp. 1065–1077.

[77] Vasileios Mavroeidis, Kamer Vishi, Mateusz D Zych, and Audun
Jøsang. “The impact of quantum computing on present cryptography”.
In: arXiv preprint arXiv:1804.00200 (2018).

https://www.schneier.com/wp-content/uploads/2016/02/worldwide-encryption-product-survey-data.xls
https://www.schneier.com/wp-content/uploads/2016/02/worldwide-encryption-product-survey-data.xls
https://www.schneier.com/wp-content/uploads/2016/02/worldwide-encryption-product-survey-data.xls
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://www.redhat.com/en/topics/security/what-is-software-supply-chain-security
https://www.redhat.com/en/topics/security/what-is-software-supply-chain-security
https://www.redhat.com/en/topics/security/what-is-software-supply-chain-security
https://zoom.us/
https://bigbluebutton.org/
https://bigbluebutton.org/
https://www.amberscript.com

[78] Christian Stransky, Oliver Wiese, Volker Roth, Yasemin Acar, and
Sascha Fahl. “27 Years and 81 Million Opportunities Later: Inves-
tigating the Use of Email Encryption for an Entire University”. In:
43rd IEEE Symposium on Security and Privacy, IEEE S&P 2022,
May 22-26, 2022. IEEE Computer Society, May 2022.

[79] Elaine Venson, Xiaomeng Guo, Zidi Yan, and Barry Boehm. “Costing
Secure Software Development: A Systematic Mapping Study”. In:
Proc. 14th International Conference on Availability, Reliability and
Security. ARES ’19. Canterbury, CA, United Kingdom: ACM, 2019.

[80] Andres Freund. backdoor in upstream xz/liblzma leading to ssh
server compromise. https : / / lwn . net / ml / oss - security /
20240329155126.kjjfduxw2yrlxgzm@awork3.anarazel.de/,
as of February 7, 2025. Mar. 2024.

[81] Redhat Inc. CVE-2024-3094. https : / / access . redhat . com /
security/cve/CVE- 2024- 3094, as of February 7, 2025. Mar.
2024.

[82] Henrik Plate, Serena Elisa Ponta, and Antonino Sabetta. “Impact
assessment for vulnerabilities in open-source software libraries”. In:
2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 2015, pp. 411–420.

[83] Lina Boughton, Courtney Miller, Yasemin Acar, Dominik Wermke,
and Christian Kästner. “Decomposing and Measuring Trust in Open-
Source Software Supply Chains”. In: Proc. 2024 ACM/IEEE 44th
International Conference on Software Engineering: New Ideas and
Emerging Results. ICSE-NIER’24. Lisbon, Portugal: ACM, 2024,
pp. 57–61.

[84] Stephen McQuistin, Mladen Karan, Prashant Khare, Colin Perkins,
Gareth Tyson, Matthew Purver, Patrick Healey, Waleed Iqbal, Junaid
Qadir, and Ignacio Castro. “Characterising the IETF through the lens
of RFC deployment”. In: Proc. 21st ACM Internet Measurement
Conference. IMC ’21. Virtual Event: ACM, 2021, pp. 137–149.

[85] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Per-
alta, Ray Perlner, and Daniel Smith-Tone. Report on Post-Quantum
Cryptography. Apr. 2016.

[86] Dustin Moody, Ray Perlner, Regenscheid Andrew, Angela Robin-
son, and David Cooper. Transition to Post-Quantum Cryptography
Standards. 2024.

[87] Azadeh Mokhberi and Konstantin Beznosov. “SoK: Human, Organi-
zational, and Technological Dimensions of Developers’ Challenges
in Engineering Secure Software”. In: Proc. 2021 European Sympo-
sium on Usable Security. EuroUSEC ’21. Karlsruhe, Germany: ACM,
2021, pp. 59–75.

[88] Erin Kenneally and David Dittrich. “The menlo report: Ethical princi-
ples guiding information and communication technology research”.
In: Available at SSRN 2445102 (2012).

A Survey Questionnaire

1. Do you have any experience with updating cryptographic im-
plementations in any of your projects? [If yes, please briefly
explain in one or two sentences (text entry); no] (single choice)

2. Which of the following best describes your current employ-
ment status? Please check all that apply.[Employed full-time;
Employed part-time; Independent contractor, freelancer, or self-
employed; Not employed but looking for work; Not employed
but currently not looking for work; Stay-at-home parent; Stu-
dent; Military; Retired; Unable to work; Prefer not to disclose;
Prefer to self-describe (text entry)] (multiple choice)

3. What is your current occupation? (text entry)
4. How many projects have you contributed to in the past? [1–5,

6–10, 11–15, 16–20, >20] (single choice)

5. In which way do you mainly contribute to projects? Please
check all that apply. [Solo, As part of a software development
team in a company, As a contributor to an open source project,
Prefer to self-describe (text entry)] (multiple choice)

6. How many years of experience do you have in software devel-
opment in total? (please only answer using digits, e.g., 4) (text
entry)

7. How many years of experience do you have in computer secu-
rity in total? ’Experience’ includes years at work or studying
in a security-related field (please only answer using digits, e.g.,
4). (text entry)

8. What is the highest degree or level of school you have received?
(If you’re currently enrolled in school, please indicate the high-
est degree you have received.) [I never completed any formal
education, 10th grade or less (e.g. some American high school
credit, German Realschule, British GCSE), Secondary school
(e.g. American high school, German Gymnasium, Spanish or
French Baccalaureate, British A-Levels), Trade, technical or vo-
cational training, Some college/university study without earn-
ing a degree, Associate degree (A.A., A.S., etc.), Bachelor’s
degree (B.A., B.S., B.Eng., etc.), Master’s degree (M.A., M.S.,
M.Eng., MBA, etc.), Professional degree (JD, MD, etc.), Other
doctoral degrees (Ph.D., Ed.D., etc.), Prefer not to disclose,
Other (please specify) (text entry)] (single choice)

9. If you indicated that you received a degree, which subject did
you study or which field did you specialize in? [Optional] (text
entry)

10. Did you receive any security education (job training, certifi-
cates, university courses)? [Optional] [Yes, No, Prefer not to
disclose] (single choice)

11. [If "Yes" in Question 10] Where did you receive your se-
curity education? [Optional] [Self-taught, Online class, Col-
lege/University, On-the-job training, Coding Camp, Prefer
not to disclose, Prefer to self-describe (text entry)] (multiple
choice)

12. What is your gender? [Optional] [Female, Male, Non-binary,
Prefer not to disclose, Prefer to self-describe (text entry)] (sin-
gle choice)

13. What is your age (in years)? (please only answer using digits,
e.g., 19) [Optional] (number entry)

14. Which country do you currently reside in? [Optional] (country-
selection drop-down menu)

B Interview Guide

S1: Cryptographic use in software projects

• S1.Q1: [Crypto Projects] [if any crypto project not mentioned
for S1.Q2] Please provide some examples where you typically
“get in touch” with crypto implementations in your projects.
(e.g., encryption, authentication, crypto libraries, verification)
With the term crypto implementations, we include protocols,
primitives, algorithms, and cryptographic libraries.

– S1.Q1.1: [Contributions] What were your contributions
to these projects?

https://lwn.net/ml/oss-security/20240329155126.kjjfduxw2yrlxgzm@awork3.anarazel.de/
https://lwn.net/ml/oss-security/20240329155126.kjjfduxw2yrlxgzm@awork3.anarazel.de/
https://access.redhat.com/security/cve/CVE-2024-3094
https://access.redhat.com/security/cve/CVE-2024-3094

– S1.Q1.2.: [Roles (projects in S2.Q1.)] What were your
roles in these projects?

* S1.Q1.2.1: [Responsibilities] What were your re-
sponsibilities?

– S1.Q1.3: Please state the importance of cryptography in
your project(s).

– S1.Q1.4: [if reason is not clear from S2.Q1] For what
reasons are you using crypto implementations in your
project(s)?

– S1.Q1.5: Which crypto implementations are you us-
ing?

– S1.Q2: [Decisions] Can you tell us how you decide
which crypto implementations you use?

– S1.Q2.1: [Resources] What security-related resources
do you use/consult for your references (Resources could
include everything like online websites, books, specific
people, etc.)?

* S1.Q2.1.1: [Recommendations] [If not mentioned
in S2.Q2.1] What kind of recommendations do you
use/follow while deciding on crypto implementa-
tions?

S2: Updating Crypto

• S2.Q1: Briefly describe Chrome deprecating SHA1 certificates
here

– S2.Q1.1: Before delving further into the crypto update
process-related questions, we would like to briefly state
an example of when Chrome deprecated SHA1 certifi-
cates.
In 2005, it was widely known that SHA-1 was weaker
than what was originally thought. Google Chrome an-
nounced in 2014 to remove the support of SHA-1 cer-
tificates. The removal took Google five years, so SHA-1
certificates were supported for a much longer period than
Google thought. (Removal by 2019)

• S2.Q2: [Frequency] How often have you had to update crypto
implementations in your projects in the past?

• S2.Q3: [Update Situation] Please elaborate on the most im-
pactful crypto update you have experienced.

• If you have trouble remembering, you can tell us about the
latest crypto update.

• S2.Q3.1 (If they say some update was most impactful)

– [Impactful] Why was it most impactful?

S3: Reasons and Awareness for Updating

• S3.Q1: [Reason] For which reasons did you update crypto
implementations in the past in your project(s)?

• S3.Q2: [Awareness]: How did you become aware that you
should update your crypto implementation(s)? (e.g., notifica-
tions, supply chain security)

– S3.Q2.1: [Notification] [If not mentioned in S4.Q2]:
How do you get notified about potential issues in your
implementation/project / Software Supply Chain? (no-
tification channels may be social media or CV tracker,
security researchers)

• S3.Q3: [Consequences after awareness]: How did you react
after becoming aware that you should update your crypto code?

– S3.Q3.1: What were the consequences for the
project/product (e.g., stop shipping vulnerable/broken
versions, reschedule future releases, affect other
projects)?

• S3.Q4: Does your project contain any third-party crypto imple-
mentations?

Definition [Software supply chain security]: combines best practices
from risk management and cybersecurity to help protect the software
supply chain from potential vulnerabilities.

• S3.Q4.1: How do you handle supply chain security in your
projects?

• S3.Q4.2: [If yes]: How do you manage your dependencies?

– S3.Q4.2.1: In your experience, are there any differ-
ences in managing cryptographic dependencies as com-
pared to general/regular dependencies? (e.g., numpy vs.
OpenSSL)

* S3.Q4.2.1.1: [If yes]Please elaborate on the differ-
ences. (what and why)

– S3.Q4.2.2: [Issue handling] How do you handle issues
in your supply chain? (e.g., update version in the supply
chain if available, replace the library with another that
has no issues, offer a downgrade, etc.)

S4: Update Process
Block 1: Strategies:

• S4.B3.Q1: [Strategies] Please describe the overall strategies
used to plan and perform the crypto update process.

– S4.B3.Q1.1 [Strategies Plan]: How did you plan the
crypto update process?

– S4.B3.Q1.2 [Strategies Perform]: How did you perform
the crypto update process?

Block 2: Involved People and Roles:

• S4.B1.Q1: [Roles & Responsibilities] What was your part in
the crypto update process and what were your responsibilities?

• S4.B1.Q2: [Other people update process] Who else apart
from yourself was involved in the crypto update process?

– S4.B1.Q2.1: [Externals] Were any externals involved?
(e.g., hired professionals, freelancers, hired services from
a company), crypto researcher.

* S4.B1.Q2.1.1[If yes] Why were external people in-
volved?

– S4.B1.Q2.2: [Experts] Do you rely on experts for
specific problems/implementation? (consultants, free-
lancers) (internally, externally)

* S4.B1.Q2.2.1 [If yes] For which purposes?

Block 3: Decision Finding Process:

• S4.B2.Q1: [Decision Finding Process] Please describe what
the decision-finding process for the crypto update was. (e.g.,
weekly meetings of core developers, mailing lists, GitHub Is-
sues, or polls)

– S4.B2.Q1.1: Who is in charge of this process?

• S4.B2.Q2: [Sec & Qual Management] Which strategies are
used for security and quality management? (e.g., QA, audits,
internal testing, beta testing)

• S4.B2.Q3: [Advice] Did you ask someone, or who would you
ask to get help in the crypto update decision-finding process?

Block 4: Success or Failure:

• S4.B4.Q1: Were you finally able to successfully update the
crypto implementation?

– [If yes]

* Did the updated crypto implementations fulfill the
requirements?

* What major changes occurred to the project?
– [If no] Did any of your crypto update processes fail in

the past?

* [If yes] Could you elaborate on the reasons for the
failure?

* Did your crypto update process improve after the
failure?

* How did you end up fixing the problem?
* What consequences occurred due to the crypto up-

date failure? (e.g., delayed release, additional work-
load, higher costs, someone got fired)

S5: Experiences (Positive and Negative)

• S5.Q1: Please tell us about your experiences when updating
crypto implementations in your projects.

– S5.Q1.1: How long did it take from recognition to fix?
– S5.Q1.1: Which efforts were required for the crypto

updates, and how do they differ from regular software
updates?

Block 1: Good Experiences:

• S5.B1.Q1: Can you tell us about things that went well during
the crypto update process? (Crypto-specific follow up)

– S5.B1.Q1.1: [If good exp]: What was most satisfying?

Block 2: Bad Experiences:

• S5.B2.Q1: Did you have any negative experiences during the
crypto update process? (Crypto-specific follow up) breaking
changes

– S5.B2.Q1.1: [If yes:] Could you elaborate on those neg-
ative experiences?

– S5.B2.Q1.2: How did the crypto update affect other
projects or parts of the same project?

Block 3: Changes and Improvements:

• S5.B3.Q1: What were the [major] changes to the project after
you did the crypto update process?

• S5.B3.Q2: [IMPROVEMENTS] Have you improved the over-
all crypto update process?

– S5.B3.Q2.1: [If yes]What were the improvements to the
update process?

S6: Challenges

• S6.Q1: What challenges or roadblocks did you encounter dur-
ing the crypto update process?

– S6.Q1.1: What was the most challenging aspect of up-
dating crypto?

• S6.Q2: What problems did occur in the process of updating
crypto? (For example, for forced rollbacks due to unintended
changes, are too many code changes needed?)

• S6.Q2.1: [If they don't say it by themselves] Which issues did
you face regarding back compatibility?

– S6.Q2.2: Did you encounter any challenges using the
documentation?

– S6.Q3: Have you ever skipped or avoided a crypto update
process (crypto implementations)?

– S6.Q3.1: What were the reasons for not updating?
– S6.Q3.2: Were there any consequences caused by not

updating (e.g., keeping deprecated or outdated imple-
mentations/libraries, known/existing vulnerabilities in
the codebase)

S7: Wishes

• S7.Q1: Based on your experiences, what do you think can be
improved to help yourself better update the crypto code?

– S7.Q1.1: Are there any unfulfilled wishes that may help
you to encounter this process better?

– S7.Q1.2: Do you think established best practices or a
standard would be helpful in the context of updating
crypto code?

– S7.Q1.3: How well do you feel supported in updating
crypto implementations in general? (internal documenta-
tion, company internal consultancies, onboarding of new
developers, experts involved in the project)

• S7.Q2: As a developer [change terms here based on the role of
the participant], what do you think is the “perfect solution” for
a successful crypto update process?

Conclusion

• [Asking Shadow Interviewer] Does my colleague have any
remaining questions?

• Finally, is there anything else you wish we had asked about, or
would you like to tell us about it?

	Introduction
	Related Work
	Methodology
	Recruitment Process
	Interview Guide Design
	Interview Procedure
	Qualitative Data Analysis
	Limitations
	Demographics

	Results
	Crypto Update Process
	Crypto Update Triggers
	Objectives of Updating Cryptography
	Planning a Cryptographic Update
	Implementing a Cryptographic Update
	Crypto Update Security & Quality Assurance

	Uniqueness of Cryptographic Updates
	Challenges of Updating Cryptography
	Wishes for Cryptographic Updates

	Discussion
	Recommendations
	Comparing Cryptographic Updates to Regular and Security Updates

	Conclusion
	Survey Questionnaire
	Interview Guide

