
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

From Needs to Actions to Secure Apps?
The Effect of Requirements and Developer

Practices on App Security
Charles Weir, Lancaster University; Ben Hermann, Paderborn University;

Sascha Fahl, Leibniz University Hannover

https://www.usenix.org/conference/usenixsecurity20/presentation/weir

From Needs to Actions to Secure Apps?

 The Effect of Requirements and Developer Practices
 on App Security

Charles Weir, Lancaster University

Ben Hermann, Paderborn University Sascha Fahl, Leibniz University Hannover

Abstract
Increasingly mobile device users are being hurt by security or
privacy issues with the apps they use. App developers can
help prevent this; inexpensive security assurance techniques
to do so are now well established, but do developers use
them? And if they do so, is that reflected in more secure apps?
From a survey of 335 successful app developers, we conclude
that less than a quarter of such professionals have access to
security experts; that less than a third use assurance tech-
niques regularly; and that few have made more than cosmetic
changes as a result of the European GDPR legislation. Reas-
suringly, we found that app developers tend to use more as-
surance techniques and make more frequent security updates
when (1) they see more need for security, and (2) there is se-
curity expert or champion involvement.

In a second phase we downloaded the apps corresponding to
each completed survey and analyzed them for SSL issues,
cryptographic API misuse and privacy leaks, finding only one
fifth defect-free as far as our tools could detect. We found
that having security experts or champions involved led to
more cryptographic API issues, probably because of greater
cryptography usage; but that measured defect counts did not
relate to the need for security, nor to the use of assurance
techniques.

This offers two major opportunities for research: to further
improve the detection of security issues in app binaries; and
to support increasing the use of assurance techniques in the
app developer community.

1. Introduction
Increasingly software security and privacy are becoming ma-
jor problems for society. Almost every day we hear of new
attacks and privacy problems, and increasingly they are af-
fecting not just large companies, but everyone [46]. While
there are many ways to address these issues, clearly software
developers have a vital role to play in creating services and
applications that enforce security effectively1.

1 Throughout this paper we refer to ’developers’ meaning all those involved
with software development: programmers, testers, project managers, and prod-
uct owners.

The software industry has developed a range of inexpensive
security assurance techniques for software developers
[9,45,51] and some teams even use formal secure develop-
ment lifecycles to pull them together [55]. However, though
many developers are using those assurance techniques, others
are not. Factors such as lack of motivation, pressures to do
other work, lack of access to learning and support, or sheer
ignorance of the need, all act as barriers to adoption [5,32].
Some development teams may have access to security experts
to help them; others may have little or no practical knowledge
of software security. In some cases, this may not matter—if
the code has no security or privacy implications—but in oth-
ers it may harm a range of stakeholders, from software users
to organization senior management.

In this work we investigate how big a problem this may be in
practice. Our first research question was:

RQ1: To what extent, and how, does a perceived need for
security and privacy lead to security-enhancing activities and
interactions in the development team?

To begin to address this question2, we chose a specific set of
software developers to investigate: Android application de-
velopers. Our reasons for choosing these were twofold:

1. The research team has considerable experience in An-
droid development security research [2,33]

2. The Android ecosystem provides access to both devel-
opers and the software developed, along with an indica-
tion of application usage.

Accordingly, we carried out an online survey of professional
Android developers, asking for details of their security prac-
tices and interactions. Our key findings from statistical anal-
ysis of the 330 completed and accepted surveys3 are as fol-
lows:

• No more than 22% of Android app developers have regu-
lar access to security professionals;

2 RQ1 was modified to include ‘how’ and ‘perceived’ following feedback on
the paper.
3Assuming the sample is representative of Android app developers. See Sec-
tion 5.1.

USENIX Association 29th USENIX Security Symposium 289

• Less than 53% of them have used any of the basic assur-
ance techniques; less than 30% use any regularly; and se-
curity updates for apps generally happen less than once a
year.

• Less than 15% of them have made more than cosmetic
changes as a result of the new GDPR legislation.

• Android app developers’ use of assurance techniques is
positively correlated with the perceived need for security,
the involvement of security experts or champions, and the
security expertise of the developers;

• The reported frequency of app security updates is posi-
tively correlated with the perceived need for security, the
security expertise of the developers, and the developers’
use of assurance techniques.

In a second phase, we investigated how these aspects of the
development process were reflected in objective app security
outcomes. Our research question for this phase was:

RQ2: To what extent do the need for security, the involve-
ment of specialist roles, and the use of assurance techniques
in a development team lead to fewer security defects?

We analyzed the corresponding Android applications created
by each developer and matched the findings to the question-
naire results, concluding that:

• There was no correlation found between the perceived
need for app security, nor the use of assurance techniques,
and the defect count of the resulting app; and

• Surprisingly, the involvement of security professionals
and ‘security champions’ is correlated with higher cryp-
tographic API defect counts.

This paper is structured as follows. Section 2 explores related
work, including a discussion of assurance techniques; Section
3 describes the survey design, participant recruitment ap-
proach, analysis plan, survey trials and limitations; Section 4
describes the same for the app binary analysis; Section 5 ex-
plores both the survey and app analysis results; Section 6 ex-
plores the implications of these results; and Section 7 sum-
marizes the main learning points and conclusions.

2. Related Work
In this section, we discuss related work in three key areas:
ways of finding security and privacy flaws in otherwise be-
nign mobile apps; research work into developers’ secure de-
velopment behavior; and findings on the important developer
assurance techniques.

2.1. Security and Privacy in Mobile Apps
The introduction of App Stores, that act as an intermediary
between developers and consumers, has required each app
store provider to find ways to detect rogue applications and
rogue application developers. This has led to research into

ways of analyzing application binaries to detect hostile be-
havior. Enck et al. [18], for example, used a decompiler to
analyze a range of popular applications, finding many privacy
issues though no security misbehavior. Glanz et al. [22] in-
spected obfuscated apps to detect repackaged apps—benign
apps that have been modified and re-uploaded to app stores.
Reyes et al. [39] explored children’s app binaries, finding
many violations of US privacy law.

However, only more recently has there been much investiga-
tion into the problems of benign apps that may have security
or privacy flaws. This may be due partly the difficulty of tak-
ing action: Google Play does not have the remit of enforcing
better security [29] and the app developers may not wish to
do so. But with the increase of interest in security issues [46],
researchers are now taking a variety of approaches to inves-
tigate.

Li et al. [28] provide a literature survey over the vast amount
of research in the field of static program analysis for Android
including an overview of used tooling and methodology. The
most prominent works in the area are FlowDroid by Arzt et
al. [4], which is able to find privacy leaks by inspecting illicit
information flow; IccTA by Li et al. [27], which extends
FlowDroid to account for inter-component privacy leaks; and
MalloDroid by Fahl et al. [20], which detects improper use of
transport layer security in apps.

As Android apps become increasingly polyglot with the use
of hybrid app frameworks and native libraries, in recent work,
analyses over these language boundaries have been increas-
ingly in focus. Bai et al. [7] inspected apps which use the Ja-
vaScript bridge communication scheme to construct leaks un-
detectable by previous approaches. Wei et al. [50] provide
support for information leak tracking through the Java and
the native part of an app helping to find information leakage
with could not be detected with Java-only-based approaches.

Another important area of investigation is the security of the
interaction of apps with cloud environments. Zuo et al. [58],
for example, found by inspecting apps from Google Play that
many of the used cloud services are vulnerable and may leak
user data—an observation previously made by Rasthofer et
al. [38].

2.2. Developer Security Behavior
A few teams have investigated the underlying causes behind
software security problems. Oliveira et al. [32] used psycho-
logical manipulation to explore what caused developer vol-
unteers to include vulnerabilities in software, finding two
main causes: developers’ focus on ‘normal cases’ and a lack
of priority for security. Assal and Chiasson [5] surveyed 123
North American developers, finding their respondents moti-
vated to produce secure code—once the implications and
possible damage to stakeholders are understood—but often
prevented by lack of organizational and process support.

290 29th USENIX Security Symposium USENIX Association

Senarath and Arachchilage [42] used a task given to program-
mers to explore issues related to user privacy; their findings
were that it was difficult to understand such requirements and
to translate them into engineering techniques.

Others have investigated the use and adoption of security–
focused code analysis tools. Xie et al. [57] explored the im-
pact of one such tool, finding that even when creating secure
code is relatively easy developers still need motivation to
make the needed changes. Witschey et al. [56] surveyed de-
velopers about their adoption of such tools, finding that the
most important factor was seeing peers using them.

Several researchers have investigated the process of updating
software when security faults are detected. Derr et al. [15] in-
vestigated how Android app developers keep library versions
up to date, surveying app developers and analyzing of app
binaries. They found that it was often possible to solve vul-
nerabilities by library updating without changes in code, but
that frequent backward incompatible changes and incorrect
Semantic Versioning in libraries currently make such updates
difficult. Others investigated to what extent the fixes were
necessary: Nayak et al. [30] found that less than 15% of
known vulnerabilities were actually used in attacks, suggest-
ing an opportunity for a more nuanced approach than just fix-
ing everything. Vaniea and Rashidi [49] used a survey of 307
users to analyze the effectiveness of the update procedure.
They derived advice for developers, including making it easy
to find documentation, and planning a ‘recovery path’.

Other researchers have investigated security requirements,
especially related to privacy. Türpe [47] found a range of re-
search related to security requirements, especially Threat
Modeling techniques, but no agreement on terminology or
approach.

2.3. Developer Assurance Techniques
An important approach to improving software quality has
been changes to development processes. This may be through
a Secure Software Development Lifecycle, a prescriptive set
of instructions to managers, developers and stakeholders on
how to add security activities to the development pro-
cess [55]; or by empowering the developers to make their
own decisions about how to achieve security [53].

Particularly important is the need to align security goals with
business needs [10,51]. Though much work has been done to
support evaluating security problems in terms of risk and im-
pact [47], identifying the need for security experts to be busi-
ness negotiators and evangelists [23], there has been little at-
tention to developer interactions with other stakeholders on
security.

The specific techniques and approaches used by developers
depend, of course, on their environment and constraints.
There are more than twenty identifiable assurance techniques

in regular use today, differing significantly in cost effective-
ness, though there are combinations that are typically used
together [45]. In particular one can identify a set of about five
‘entry level’ assurance techniques that are widely used and
can be introduced at relatively low cost [51]. In terms of prac-
tical support for developers, a recent book ‘Agile Application
Security’ by Bell et al. [9] provides guidance, a discussion of
tools and detail on a range of assurance techniques.

2.4. Related Work Summary
Though there has been considerable work done on identifying
practical assurance techniques and tools for security, and
some work on motivating developers to use them and inves-
tigating reasons for vulnerabilities, there has been little or no
work investigating whether the need for security does in prac-
tice correlate with better practices, and result in better secu-
rity.

In this paper we make a start at that investigation.

3. Survey Methodology
We conducted an online survey of Google Play Android de-
velopers in May 2019, receiving 345 complete responses.
This section provides a detailed overview of our methodol-
ogy, with the goal of making our research plan both transpar-
ent and reproducible, to allow readers and future researchers
to better assess our contribution. Figure 1 summarizes the
study procedure.

3.1. Survey Questionnaire Structure
We asked our respondents to answer questions about their
Android application development behavior and context rele-
vant for application security and privacy, and a set of demo-
graphic questions. Although this might have led to self-re-
porting and social desirability bias, we considered this ap-
proach the best practical approach to address the research.
We implemented the questionnaire in Qualtrics [37], and de-
veloped it using an iterative process.

Figure 1: Study Procedure

Pilots

Expert reviews=1
Face-to-face pilots=4
Google Play pilots=30

Full Survey

Invited=55000
Started=605
Dropped out=260
Completed=342
Valid=330

APK Downloads

Apps to download=605
Download failed=151
Download succeeded=454

APK Analysis

Started=454
Cognicrypt failed=0
FlowDroid failed=18
MalloDroid failed=82
Full results=358

Developer Questionnaire App Analysis

USENIX Association 29th USENIX Security Symposium 291

Appendix B contains the full list of questions. In summary,
we asked respondents:

• Whether they worked in a team, and if so their role and
the team size;

• The Android development environments they used;

• The number of recent releases for their most frequently
updated app, and the proportions of updates addressing
each of new features, library updates, security and privacy
issues;

• Their evaluations of the importance of security and of pri-
vacy, both implicitly and for sales;

• Whether they receive support from security professionals
or internal security champions, and if so, the nature of that
support;

• What events had led to recent changes in security;

• Which secure development practices they used, and to
what extent;

• How long they had been programming, both generally
and with Android;

• How many apps they had developed, and whether it was
their primary job; and

• Demographic information about gender, language, and
country of residence.

Definitions: In the questions, ‘recent’ was defined as the pre-
vious two years, and ‘security champion’ to be a non-expert
who takes a particular interest in security [8]. We asked de-
velopers with more than one app to provide answers for the
most frequently updated one.

Secure Development Practices: The questions about secure de-
velopment practices asked specifically about five of the most
frequently-used assurance techniques [45,51], as follows:

Threat
Assessment

Working as a team to identify actors and po-
tential threats; following this up with risk as-
sessment and mitigation decisions.

Configura-
tion Review

Keeping components up-to-date using com-
ponent security analysis tools to the tool-
chain.

Automated
Static
Analysis

Using code analysis tools to identify certain
categories of security vulnerability.

Code
Review

Having other programmers or security ex-
perts review code for security problems.

Penetration
Testing

Having external specialist security testers
identify flaws.

Question Wording: All the questions about security processes
were worded as questions of fact, rather than of future inten-
tions as in some security surveys [16], to reduce the impact
of desirability biases.

Omissions: We considered asking about code analysis tools,
since these are of particular interest to researchers. However,
static analysis is only one of the five assurance techniques
considered, and investigating all the techniques would have
made the questionnaire unacceptably long without contrib-
uting to answers for the research questions.

3.2. Survey Pre-Testing
After developing an initial questionnaire, we conducted a set
of pre-tests to glean insights into how survey respondents
might interpret and answer questions, and how long they
might take to complete the survey, as follows.

Expert Review: After developing and revising a first version
of the survey questionnaire, we asked an experienced usable
security and privacy researcher with survey expertise, who is
not part of the research team, to review our survey question-
naire and evaluate question wording, ordering, and bias. Ex-
pert reviewing is a method that supports identifying questions
that require clarification and uncovering problems with ques-
tion ordering or potential biases [36]. Following the expert
review, we improved the wording of several questions, and
changed the survey software configuration to randomize the
order of answers and questions wherever this was possible.

Face-to-face Testing: To test our survey questions under real-
istic conditions, we then identified four local Android devel-
opers who were not previously involved in the research pro-
ject, and asked each to complete the survey while discussing
it with a researcher. As a result, we modified the wording of
two questions and added one. We also noted that responses
from those who had produced only simple apps were not in-
teresting from a security viewpoint, and accordingly modi-
fied our criteria for invitations to only invite developers of
‘successful’ and ‘maintained’ apps: ones that had received
more than 100 downloads and at least one update.

Pilot Survey: To further test the questionnaire, we ran a set of
pilot surveys with Android developers drawn from the same
invitation list as the main survey (Section 3.4), inviting 5000
and gaining 30 completed entries. Participants of the pilot
were excluded from the full survey.

We used the results to check that the number of drop-outs
during the survey was acceptable; it was, since of those who
completed the first page of questions, only 21% dropped out
later in the survey. In the pilot questionnaire we used a text
field for developers to answer what changes they had made
as a result of GDPR; we coded the pilot responses, and pro-
vided the most frequent answers as ‘tick boxes’ in the final
survey.

292 29th USENIX Security Symposium USENIX Association

The results also helped focus and plan our analysis of the
data.

Specifically, we identified the following additional research
questions to help scope the problem of supporting develop-
ers:

RQ3 What proportion of Android developers have access to
security experts, and
RQ4 To what extent do Android developers actually use as-
surance techniques?

3.3. Calculation of Required Sample Size
We used Fowler’s guidance [21], identifying the smallest
subgroups for which we wanted data, using the pilot data to
estimate the proportion of these, and making the sample size
large enough to get significant data from these groups. The
key subgroups were those developers working with security
professionals, and those using assurance techniques; and we
chose to get between 50 and 100 in each group to give typical
sampling errors on data for each subgroup of between 4% and
15%. Based on the pilot data, therefore, we calculated a target
sample size of 310, requiring us to send 55,000 invitations.

3.4. Recruitment
We invited only registered Google Play developers. From
January to February 2019 we crawled the details’ pages of
3,608,673 (2,087,829 free and 1,520,844 paid) Android ap-
plications from those published in Google Play. For all apps,
we stored their last update time, name, developer data and
download counts.

Overall, we identified 312,369 developer accounts that match
the 100+ downloads and update requirements in Google Play.
The number of apps published by a single developer account
in that sample ranges from 1 to 3,302 with a median of 2.
From these 312,369 developer accounts, we selected a ran-
dom sample of 55,000, and sent a single invitation email to
each to ask them kindly to support our research. Of the in-
vited 55,000 participants, 605 started and 345 completed the
survey. Ten of the invited developers reached out to us via
email. None complained about being contacted; three asked
to be removed from the mailing list; the remainder provided
various reasons for not completing the survey, including two
who noted the security questions and stated that their apps
had no security aspects. 240 took the opportunity to leave
their email address in the survey questionnaire for us to send
them the results of this work.

3.5. Filtering Invalid Results
In psychological surveys, a common stratagem is to ask a
question twice, once negated. One can then filter out mean-
ingless responses (or use them to calculate a “self-con-
sistency” score for the survey). Since our survey was asking
facts rather than personality, we concluded that this would be
contrived and irritating to the respondents. Instead we looked

at response times, experimented to find a minimum time that
a participant might be expected to take to complete the sur-
vey, and filtered out the few (10) surveys that had taken less
than that minimum time to complete.

3.6. Survey Statistical Analysis Plan
This paper uses four forms of statistical analysis:
1. Population analysis, to explore how well our sample cor-

responds to the larger population;
2. Graphical analysis, to show the nature of the data;
3. Confidence limits for proportions in the wider population

based on proportions in the sample; and
4. Correlation analysis, to identify relationships between

different data items.

We defined the statistics scores and outline analysis methods
before collecting the main survey data, as required for re-
search best practice [11,12]. For analysis, we used Python
statistical packages, including Pandas, Statsmodels, and Sea-
born, in Jupyter Notebooks [25].

Linear Analysis for RQ1: To address RQ1, we defined scores
based on each respondent’s survey answers: some scores cap-
tured the “need for security and privacy” (the independent,
‘input’, variables); others the “security-enhancing activities
and interactions in the development team” (the dependent,
‘output’, variables).

Figure 2 shows the processing we did to create these scores.
The aim in each case was to create an ordinal score that ap-
proximated to linear across the range of raw data, so a higher
score corresponds to more security (or more drivers towards
security) and each increment represents a similar semantic in-
crease. As shown, the Requirements Score reflects the secu-
rity need as the arithmetic sum of the three Likert-style re-
sponses encoded as integers; similarly, to explore the why,
there are Developer Knowledge and Expertise Support

Figure 2: Survey Security Scores

0 no, 1 champion, 2
expert, 3 both

0

+

Coded: 0 not at all,
to 4 extremely

Requirements Score

Developer
Knowledge Score

0 none, 1 champion,
2 expert, 3 both

Expertise Support
Score

Developer
Security
Knowledgeability

Expert, Champion
in Team?

Reported App
Update Frequency

Reported %age
Security Updates

Log (updateFreq *
proportionSecurity)

Security Update
Frequency Score

+ Assurance Technique
Score

Coded: 0 none …
to 4 every build

Each Assurance
Technique use

Importance of
Security & Privacy

Coded: 0 not at all,
to 4 extremely

USENIX Association 29th USENIX Security Symposium 293

scores. We estimated a Security Update Frequency as the
product of the answers to two questions; this had an exponen-
tial (Poisson) distribution, so to make it linear [3] we used a
transformation: log(𝑥& + 1) to create the Security Update
Frequency Score. Appendix C provides more details.

The calculation of the Expertise Support Score is based on an
assumption that direct expert involvement is more effective
than ‘security champions’; the Requirements Score assumes
that, for example, occasionally using two techniques is as ef-
fective as regularly using one; and the Assurance Technique
Score assumes that, say, considering four techniques is as ef-
fective as consistently using one. Though reasonable as an
approach, none of these scores are linear or even provably
ordinal [44]; we anticipated that inconsistencies in the scor-
ing would add to the statistical variance but not obscure over-
all trends. See Section 5.5 for a post-hoc justification.

In statistics, the usual relationship to look for is a linear one.
In line with previous research in the field [16] we used the
Pearson Correlation Coefficient (‘Pearson R’) calculation
[14] to establish whether pairs of values had a significant lin-
ear relationship; this test is acceptable for Likert-style data
[24,31].

Given that the scores were not provably linear, we also inves-
tigated a more sophisticated modelling technique, creating
Decision Tree models [41] for pairs of scores and using F-
Tests [13] to compare each with the simpler Pearson R model.

In this analysis we treated the Security Update Frequency
score as a dependent variable (output); and the Requirements,
Expertise Support, and Developer Knowledge scores as inde-
pendent variables (inputs)4. The use of Assurance Techniques
is likely to be affected by the latter three variables but may
itself in turn affect the Security Update Frequency and other
security outcomes; in the analysis, therefore, we treated the
Assurance Technique score both as an independent and as a
dependent variable.

Since the analysis constituted multiple tests on the same data,
we applied the Bonferroni correction [40], reducing the
threshold for ‘significance’ accordingly to (5%)/5 = 1%.
To validate the preconditions for the Pearson Correlation Co-
efficient test [14], we then constructed x-y plots of all the
pairs of variables that showed significant correlation.

4. Application Analysis Methodology
In the second phase of the project, we downloaded and ana-
lyzed the apps corresponding to the survey responses. For
analysis, we used a selection of state-of-the-art of vulnerabil-
ity scanners. Each one focuses on a different problem cate-
gory and produces a relatively low number of false positives.

4Pearson’s R does not distinguish dependent and independent variables, so this
affects only our choice of scores to correlate with each other.

We chose mature tools that are openly accessible to Android
developers.

4.1. Description of Analysis Tools
The tools covered three key areas: SSL Security, Crypto-
graphic API Misuse, and Privacy Leaks. We selected these
areas based on previous work and because these cover a rep-
resentative range from the possible security and privacy vul-
nerabilities faced by application developers [34].

SSL Security: A key concern in the secure treatment of infor-
mation is the correct use of secure transport mechanisms
(SSL, TLS) when connecting to remote systems. To capture
this aspect, we used two techniques. First, we used Mal-
loDroid [20] to inspect the correct use of certificate validation
in the apps code. Second, we extracted any HTTPS URLs
from the constant pools of the classes contained in the app
using the OPAL framework [17] and checked the correspond-
ing server configurations and certificates using the com-
mand-line tools curl and openssl.

Cryptographic API Misuse: Many apps use cryptographic
measures to improve data security and privacy, and a key
concern in the secure treatment of information is the handling
of cryptographic primitives (e.g., for persistence). We run
CogniCrypt [26] to capture this aspect. CogniCrypt uses
static inter-procedural static program analysis to detect mis-
uses of the Java Cryptography API. The detected problems
range from improper configuration of algorithms (e.g., use of
AES with ECB) to incorrect order of calls to the API. As it is
formulated as a static program analysis, CogniCrypt makes
conservative assumptions (over-approximations) on the con-
trol flow of the program, which may produce false positive
reports.

Privacy Leaks: To find possibly harmful data flow that can
lead to privacy leaks, we used FlowDroid [4]. This tool is de-
signed to find information flow in Android apps between de-
fined information sources and information sinks. For exam-
ple, the location APIs are considered as sources of private in-
formation, and the text message sending APIs as sinks.
FlowDroid uses static inter-procedural data flow analysis to
find evidence of directed information flow between these
methods. We configured the tool with the default sources and
sink for Android provided by the authors, which had been
constructed by manual inspection of common vulnerabilities
in Android apps. FlowDroid is not able to determine if the
found information flow is to be considered an actual leak as
it might also be intended to use the information in the partic-
ular context (e.g. for location-based services).

Practical Approach: We downloaded the application binaries
for at least one application by each of the survey respondents,

294 29th USENIX Security Symposium USENIX Association

wherever possible; we ran the full set of scanning tools on
each, and counted the issues (reports of possible vulnerabili-
ties) generated. Appendix A lists the versions of the tools we
used.

4.2. Application Statistical Analysis
As in the previous phase, we used graphical tools to explore
the data, and linear analysis to explore relationships between
the data.

To investigate RQ2, we defined further scores to represent
the outcome “fewer security defects” in each app analyzed.
Figure 3 shows the processing involved. We anticipated that
the issue counts would have a Poisson distribution; to permit
linear analysis we used a log transformation5. As with the
scores for developer behavior, we wanted scores that increase
with increasing app security and privacy, and we therefore
negated the log value.

We used the same method as previously (Section 3.6) to look
for relationships between these scores and the scores from
Figure 2 covering the “need for security, involvement of spe-
cialist roles, and use of assurance techniques in a develop-
ment team” in RQ2.

4.3. Ethical Considerations
Our institutions’ Institutional Review Boards approved this
study, including the use of publicly available contact details
for the survey invitations. Additionally, we modeled our re-
search plan and survey procedure to adhere to the strict data
and privacy protection laws in the UK and Germany and the
General Data Protection Regulation in the E.U. We provided
all participants with a form that informed them about the
study purpose, the data we collected and stored, and an email
address and phone number to contact the principal investiga-
tors in case they had questions or concerns.

4.4. Survey Limitations
As with most studies of this type, our work has limitations.

The response rate for our online developer survey was very
low, as might be expected from sending unsolicited emails to

5 Specifically, log(𝑥& + 	k), where k is chosen to minimize skewness [3]; in
practice we trialed different values of k, finding no difference to the results, so
used the conventional research practice of k=1.

prospective participants. However, our recruitment approach
was incorporated by relevant previous work [1,2,54]. The low
response rate may introduce some self-selection bias, but
since the invitations made no mention of security, we have no
reason to believe a priori that those who responded differ
meaningfully in terms of security or privacy behavior from
those who did not.

All the survey data—except download count and last app up-
date date—is self-reported. Though we addressed this by
keeping questions as fact-oriented as possible, this is an im-
portant limitation.

In terms of the population, the survey reached app owners
rather than all app developers; so, data about the respondents’
own experience is not representative of all Android develop-
ers, nor of software developers in general.

4.5. App Analysis Limitations
The static analyses we chose each consider specific catego-
ries of vulnerabilities. This may disregard other categories of
issues which may also be security critical. Indeed, many vul-
nerabilities—especially privacy ones—will tend to be in the
intended app functionality rather than in the detailed imple-
mentation, and we have no way to estimate these. However,
we used detectors for a range of implementation issues which
may be found through other methods, and which developers
who consider security or privacy important would be ex-
pected to address.

Static program analysis tools often report false positives, and
the tools we used are no exception. Our approach for this sur-
vey, however, was to assume that the reported issue counts
will correlate with the numbers of true vulnerabilities, and
therefore that such counts can be used as a proxy for aspects
of app security in statistical analysis.

We were able only to analyze ‘free’ and ‘freemium’ apps, not
ones where Google Play Store charges for download; this
may introduce a bias. In cases where respondents have more
than one app, the app we downloaded may not be one requir-
ing the security practices and priorities described in the sur-
vey.

We considered improving the app analysis by ranking vulner-
abilities based on severity. However, the analysis did not
identify vulnerabilities; it reported counts of ‘issues’ de-
tected, where an ‘issue’ is a potential vulnerability. To deter-
mine whether an issue represents a vulnerability would re-
quire detailed analysis of the source code; this source code
was not available to the researchers, and decompilation was
infeasible due to the widespread use of obfuscation tools.

Figure 3: App Analysis Security Scores

- Log (count + 1)
CogniCrypt Issue
Count

MalloDroid Issue
Count

Cryptographic API
Misuse Score

+

- Log (count + 1)FlowDroid Issue
Count Privacy Leak Score

Server SSL Issue
Count - Log (total + 1) SSL Security Score

USENIX Association 29th USENIX Security Symposium 295

We also considered distinguishing issues in the source code
from issues in libraries, or using vulnerability ratings for li-
braries. However, although there have been several worth-
while tools developed to analyze the libraries used by An-
droid apps, including LibScout [6] and LibDetect [22], with
the current state of the art they are not sophisticated enough
to detect library versions reliably, nor are they integrated with
other binary analysis tools to allow differentiation of issues
in libraries from issues in the main code.

5. Results
This section describes our results, both from the survey and
from the app analysis.

5.1. Sample Validity
Comparing the box plots for invitees with those for partici-
pants in Figure 4, we see that the average user rating and
number of downloads for apps produced by the 345 develop-
ers who completed surveys are very similar to those for the
55,000 invited.

One survey question asked the respondent’s years of experi-
ence in software development. Figure 5 compares the results
with answers to a similar question addressed to the 21,000
Android developers out of the 89,000 developers who an-
swered the 2019 Stack Overflow developer survey [43]. As

6 We specified this analysis after data gathering; accordingly, significance in
any of the correlations should be considered suspect. However, a lack of sig-
nificance in a wide range of correlation calculations is a valid finding.

will be seen, the respondents are generally more experienced
than the corresponding general population (median 12 years;
population median of 8 years; Mann Whitney 𝑝 = 10234).

One concern was whether our app selection criterion (over
100 downloads and one update) was too lenient, since little-
used apps may well have poor security. To test this, we used
the Mann Whitney test comparing developers of apps with
less than 1000 downloads against the rest6. We did this for all
of the scores (Sections 3.6 and 4.2) and for all the numerically
analyzable survey questions to see if the distribution was dif-
ferent for low-download apps. In the survey results and
scores we found small p-values (<0.003) only for questions
whose answers we expected to correlate with download
counts: ‘How many apps have you developed’, ‘How many
Android apps have your developed’ and ‘Is developing apps
your primary job’, and we concluded that the populations
were essentially the same. Doing the same Mann Whitney
test on the scores in Phase 2, we found low p-values only for
the Cryptographic API Misuse and Privacy Leak scores (p ~
0.016 for each). Though suggestive, these values are not sta-
tistically significant given the number of tests done on that
same data. We concluded that there was no justification for
changing our app selection criteria.

Finally, to check the accuracy of respondents’ replies, we
compared the respondent-stated app update interval with ob-
jective evidence. App update histories are not generally avail-
able from Google Play, but we did collect the last update date
for each app we considered. We correlated the time since that
last update with the participant-stated update interval using
log scales: Pearson R=0.38, P=1e-9 (n=242). The tiny P value
corroborates the assumption that the stated update frequen-
cies reflect reality; the moderate R value reflects that re-
spondents were asked the about updates to ‘their most fre-
quently updated app’ and not the app we considered, plus the
randomness of where each app was in the release cycle.

5.2. Findings on Self-Reported Developer Behavior
The next sections describe the survey results for individual
survey questions, without considering associations between
answers7.

Importance of Security and Privacy: Figure 6 shows respond-
ents’ ratings of the importance of security and privacy in their
apps. For comparison, we also asked and show the im-
portance of other functional and non-functional require-
ments. We were surprised how many developers considered
security and privacy important, with ratings comparable with
multi-platform support and higher than for many features.

7 The number of answers varies to each question or set of questions, giving
different values for ‘n’ in each chart.

Figure 4: Comparing Invitees (light blue)

with Respondents (dark blue)

Figure 5: Development Experience

296 29th USENIX Security Symposium USENIX Association

Team Structure: Only 42% of respondents were working in
teams, the remainder being solo developers. Only 17% of re-
spondents received support from professional security ex-
perts. So, for RQ3 we calculate the ninety-five percent confi-
dence interval [48] for the proportion working with security
experts in the Android app developer population as a whole
as:

Lower bound = 14%, Upper bound = 22%

Of these few professional security experts discussed by re-
spondents, 33% were part of the development team and the
remainder external. Their most common function was Pene-
tration Testing (44%), but they also provided Design Re-
views (39%), Audits (33%) and Training (27%).

Some teams (18%) had a ‘security champion’, a non-expert
providing security input to the rest of the team. Only 7% had
both professional experts and champions.

Developer Security Knowledge: Figure 7 shows how survey par-
ticipants rated their security expertise. Interestingly, very few
considered themselves to have no knowledge; this is as we
would expect given the level of development experience of
participants (Section 5.1).

Use of Assurance Techniques: Figure 8 shows the reported use
of assurance techniques. Unsurprisingly, Threat Assessment
for every build is rare (possibly those respondents consider
the list of threats every day), as is Penetration Testing (auto-
mated penetration testing, perhaps; one participant explicitly
mentioned doing this). But otherwise the proportions using
each are fairly consistent across all the techniques.

Combinations of Assurance Techniques: We investigated the
extent to which teams used combinations of assurance tech-
niques. Figure 9 summarizes how many and how often the
techniques are used. It shows the proportion of respondents
using each number of the techniques (at least), separated out
to show how often they used them. As will be seen, less than
half had used even one technique; about a quarter used one
or more regularly; and very few used as many as four regu-
larly.

Figure 6: Importance of Different Requirements

Figure 7: How Knowledgeable about Security

Figure 8: Use of Assurance Techniques

USENIX Association 29th USENIX Security Symposium 297

So for RQ4, the 95% confidence intervals for the proportion
regularly using one or more of the given assurance techniques
in the wider Android developer population [48] are:

Lower bound = 22%, Upper bound = 30%

We analyzed which combinations of techniques were popular
amongst the 14% (57) of respondents who only used two or
three regularly. The most popular were:

Auto. Static Analysis Config. Review 37%
Auto. Static Analysis Code Review 32%
Code Review Config. Review 21%
Threat Modelling Penetration Test 18%

Security Updates: Figure 10 shows the frequency of security
updates, calculated as the product of the reported update fre-
quency, and the reported proportion of security updates. The
95% confidence interval for the proportion with less than one
update a year is 59% - 70%.

5.3. Recent Changes in Team or Development Security
Given how fast moving the field of software security has be-
come, it is also important to know what might have caused
changes in the developers’ perceptions or actions around

security. Two questions in the survey addressed this: one list-
ing possible reasons for security and privacy improvements
and asking which had affected app security; and for those
who mentioned an impact from the recent European GDPR
legislation [19], a further question asking what changes they
had made as a result. Since the GDPR legislation affects any
apps sold in Europe, it impacts developers worldwide.

Figure 11 shows the answers. Interestingly, the developers’
perception is that, even more than GDPR, the main security
driver has been the developers themselves. Encouragingly
very few (3%) reported security improvements as a conse-
quence of actual security issues affecting themselves, sug-
gesting that this is still rare; a few more (7%) reported ‘horror
stories’—something bad happening to a competitor.

Of the 45% of participants (n=133) who reported changes as
a result of GDPR, Figure 12 summarizes the changes they
made as a result. We observe that the majority of these
changes were cosmetic, at least as far as the app itself was
concerned: changing privacy policies or adding pop-up dia-
logs. Only 33 made substantive changes to improve user se-
curity or privacy (giving 95% confidence limits of 8% to 15%
for the wider Android developer population [48]).

5.4. Linear Analysis of Developer Survey Scores
Table 1 shows the results of the analysis described in Section
3.6. It correlates each of the two dependent scores represent-
ing “security-enhancing activities and interactions in the de-
velopment team” against four independent “need and mech-
anisms for security and privacy” scores. Non-italic figures
highlighted in yellow indicate a statistically significant result
(p<0.01)

Figure 9: Proportion Using N Assurance Techniques

0%

10%

20%

30%

40%

50%

1 2 3 4 5
Every Build Every Release Occasionally

Figure 12: Changes Due to GDPR

Figure 10: Security Update Frequency (Cumulative)

Figure 11: Top 5 Reasons for Security Changes

298 29th USENIX Security Symposium USENIX Association

Figure 13 shows x-y plots of these significant results. Dots
and vertical bars show the mean and its 95% confidence in-
terval for the y-readings corresponding to each x-value. The
plots also show a simple linear regression line and its confi-
dence limits. The graphs validate the preconditions for the
use of Pearson R [35]: particularly homoscedascity and lack
of outliers.

5.5. Post-Hoc Justification for Score Calculation and Analysis
We observe that the first two plots also justify our choice of
the calculation for the Requirements Score and Expertise
Support Score since the use of assurance techniques shows a
strong linear relationship to both scores.

For each of the six pairs of values highlighted in Table 1, we
compared Decision Tree models with the corresponding lin-
ear models. (F-Test, with a cut-off alpha 0.01). We found no

significant differences between the six pairs of models, which
justifies using the simpler Pearson R (linear) model. See Ap-
pendix D for details.

5.6. Findings on Application Security Indications
In the Phase 2 analysis, of the tools used, CogniCrypt re-
ported no issues for 32% of apps; FlowDroid for 35% and the
Bad SSL/MalloDroid combination for 70%. Only 20% of
apps analyzed showed no issues from any of the tools.

5.7. Linear Analysis of App Analysis Scores
Table 2 shows the results of the analysis described in Section
4.2. It correlates each of three dependent scores representing
“fewer security defects” against the four independent “need
and mechanisms for security and privacy” scores. Non-italic
figures highlighted in yellow indicate a statistically signifi-
cant result (p<0.01)

Table 2: Pearson R Results (R, P) Correlating App Security Measurements with Developer-based Factors
Independent:

Dependent:
Expertise Support Requirements Developer

Knowledge
Assurance
Technique Use

Cryptographic API Misuse -0.17, 0.016 -0.06, 0.37 -0.09, 0.17 -0.13, 0.047
Privacy Leak -0.09, 0.20 -0.01, 0.85 0.02, 0.81 0.02, 0.81
SSL Security -0.14, 0.049 0.01, 0.93 -0.02, 0.76 -0.08, 0.20

Table 1: Pearson R Results (R, P) for Developer Survey Security Scores
Independent:

Dependent:
Expertise Support Requirements Developer

Knowledge
Assurance
Technique Use

Assurance Technique Use 0.56, 3.9e-25 0.37, 1.5e-11 0.27, 8.6e-07
Security Update Frequency 0.16, 0.0085 0.25, 2e-05 0.03, 0.61 0.41, 5.7e-13

Figure 13: Cross-plots of the Scores with Significant Correlations

USENIX Association 29th USENIX Security Symposium 299

Only one result achieves significance and bizarrely that result
suggests a negative correlation: the involvement of security
professionals and champions is associated with worse Cryp-
tographic API misuse outcomes.

Figure 14 explores this odd finding. It shows that the effect is
not large, and that both experts and champions seem to be
associated with the negative correlation, though experts more
so. We note, as well, that the p-value is only just significant
given the Bonferroni correction (Threshold for significance
0.05/3 = 0.017).

Disappointingly, use of assurance techniques was not associ-
ated with better security outcomes, nor was developer secu-
rity knowledge, nor was a user requirement for good security.

6. Discussion
At first sight, the findings in Sections 5.6 and 5.7 give a de-
pressing view of app security. From Section 5.6 we see that
over 80% of apps had reported defects from our analysis
tools. From Figure 10 we see that the majority of apps get
security updates less than once a year. From the analysis of
the app security measurements, Table 2 shows that security
outcomes seem to have little correlation with an app’s per-
ceived need for security and privacy.

And Figure 12 shows that GDPR’s new compliance rules for
apps have had little real positive impact. Certainly, in many
cases cosmetic changes may have been all that was needed;
but the finding suggests that GDPR has not been a strong
force to improve app security and privacy.

6.1. Adoption of Security Techniques by Developers
However, there are positive aspects too. Considering the find-
ings in Section 5.2, Figure 7 shows us that the vast majority
of the respondents consider themselves to have at least some
security knowledge, and thus are likely to be aware of secu-
rity as a possible issue in their software development. Indeed,

Figure 6 shows that more than 60% of the respondents con-
sider security to be very or extremely important to their users,
and even more put the same value on privacy.

Section 5.2’s combinations of assurance techniques used are
particularly interesting in suggesting how security improve-
ment is happening. Though the analysis only covers a small
fraction of the total population, those respondents it considers
are the ones using only a proportion of the Assurance Tech-
niques and it therefore offers an insight into which techniques
are adopted first. One would expect teams whose security is
driven by external experts to adopt the Threat Assess-
ment/Penetration Test combination, since both of these activ-
ities can be carried out by the experts themselves; actually,
rather more adopt tool-only techniques (Auto. Static Analysis
and Config. Review), or code-review based techniques
(Auto. Static Analysis and Code Review), perhaps because
few have access to security experts (Section 5.2).

This suggests that the adoption of assurance techniques is be-
ing driven by the developers themselves, rather than by ex-
ternal security experts, and so what we are seeing is devel-
oper-led security. This tallies with the reasons given for app
security changes in Figure 11, where the most common rea-
son for changes was developer initiative. It also corresponds
to the views of security experts, who emphasize the im-
portance of developer initiative in improving software secu-
rity [53].

6.2. Appropriate Use of Security Techniques
Using security assurance techniques usually has a cost, both
in time and in financial terms [45], and therefore it is poor
economics to adopt them in cases where they are not required.
From Table 1 we see that this is correctly reflected in the An-
droid ecosystem: the use of Assurance Techniques increases
in line with the importance of security for the app. We sug-
gest that the correlation with the involvement of security pro-
fessionals/champions and with developer knowledge of secu-
rity may be an effect (expert developers and security profes-
sionals will tend to work on products that need security) as
much as a cause (their involvement causes increased assur-
ance technique use).

Updating apps also has a considerable cost, and again we
would anticipate having more security updates in cases where
security is important for the app. Again Table 1 confirms this
behavior, and shows that, justifiably, there is no correlation
between the security update frequency and the security expe-
rience of the developer.

6.3. Impact on Real App Security
It was disappointing that the use of assurance techniques did
not appear to be a major factor leading to better security out-
comes when we analyzed the apps themselves. Even though
the analysis tools can only detect a limited range of code level
security issues, we expected more security-experienced

Figure 14: Worse Cryptosecurity with Expert Involvement?

300 29th USENIX Security Symposium USENIX Association

developers and those using assurance techniques—especially
Static Code Analysis—to generate fewer such issues.

We conclude that other factors must drown out this effect.
We observe, for example, that most app binary code will con-
sist of libraries, and even up-to-date libraries will differ enor-
mously in the number of such issues they may have. We hy-
pothesize that the scores generated by the tools we used de-
pend more on the nature of the libraries needed to implement
the app functionality than on any attributes of the non-library
code created by the developers; current tools cannot verify
this effect (Section 4.5).

More surprising is the finding that the involvement of profes-
sionals and champions seems to be associated with increased
numbers of Cryptographic API issues. It seems unlikely that
this is because they create the issues. Instead, we observe that
our tools will not detect a failure to use cryptography in apps
where it is required, whereas experts or champions will do so.
We suggest that teams involving experts or champions will
therefore tend to use cryptography more frequently, leading
to more such issues.

7. Summary and Conclusions
This paper describes the creation and deployment of a survey
to Android app developers, in which we asked them a range
of questions related to their approach to security and privacy
in app development; and a second phase in which we com-
pared the answers with the outcomes of running security anal-
ysis tools on one of their apps. The research addresses the
questions as follows:

RQ1: To what extent, and how, does a perceived need for
security and privacy lead to security-enhancing activities and
interactions in the development team?

From the 335 survey responses analyzed, we found a high
level of reported security need for the app development, but
less use of practical security assurance techniques (Section
5.2). Where such techniques were used, this was in propor-
tion to the perceived need, as was the involvement of profes-
sionals and security champions. The frequency of app secu-
rity updates followed a similar pattern (Sections 5.4, 6.2).

Considering the “how” of RQ1: in the perception of respond-
ents to the survey, app security improvements have been pre-
dominantly driven by developers themselves (Section 6.1);
this is supported by the observation that the assurance tech-
niques first adopted are those most easily available to devel-
opers. GDPR has also had an impact, though the resulting
changes for GDPR have been mainly cosmetic (Section 5.3).

RQ2: To what extent do the need for security, the involve-
ment of specialist roles, and the use of assurance techniques
in a development team lead to fewer security defects?

The results of the app analysis showed little relationship with
the reported security drivers and development process from
the survey; we believe this reflects the inability of the current
generation of binary analysis tools to analyze libraries effec-
tively and separately from the main app code. We did how-
ever find the involvement of security specialists or champi-
ons to be associated with more Cryptographic API issues,
probably since they correctly enforce much more Cryptog-
raphy use (Sections 5.7, 6.3)

RQ3 What proportion of Android developers have access to
security experts?

Section 5.2 concludes that between 14% and 22% of devel-
opers work with security experts.

RQ4 To what extent do Android developers actually use as-
surance techniques?

Only between 22% and 30% regularly use assurance tech-
niques (Section 5.2)

Further, contrasting the high need for security with the low
use of assurance techniques and low availability of security
professionals, we suggest that there is an urgent need for
ways to support app developers in adopting security assur-
ance techniques in the absence of security professionals.

7.1. Future Work
As Section 6.3 discusses, we need binary analysis tools capa-
ble of:

1. Detecting library versions

2. Performing static analysis on library components
separately from the main code.

This is an active area of research; once such tools are availa-
ble, a further survey using these will provide both valuable
results, and an indication of changes over time in Android
developer security practices.

More information is also needed to support developers in us-
ing these assurance techniques, starting with how developers
currently use each one. Specific questions might address
where developers go to get security advice; what tools they
use to analyze their code; the methods they use for library
analysis; how they approach penetration testing; what forms
of code review they use; and how they tackle threat assess-
ment. A further online survey can investigate these questions.

7.2. Notes and Credits
A privacy-preserving set of the survey data, along with the
full questions and data description, is available online [52]

First, we thank Christian Stransky of LU Hannover for ob-
taining the Google Play data and APK files used as a basis
for the survey; and Dominik Wermke of LU Hannover for

USENIX Association 29th USENIX Security Symposium 301

initiating the use of Python and Jupyter notebooks for statis-
tical analysis in this project.

We thank Dr Tamara Lopez of the Open University, UK, for
her helpful review of the survey questionnaire; Dr Yasemin
Acar, of LU Hannover for practical guidance on creating and
validating questionnaires; and Professor Ian White, of UCL,
UK, for valuable advice on the statistical analysis.

We also thank the eight anonymous reviewers of this and an
earlier version of this paper, who have all contributed signif-
icantly; and particularly USENIX shepherd Professor Daniel
Zappala of Brigham Young University.

This research was partially funded by the Deutsche For-
schungsgemeinschaft (DFG, German Research Foundation)
under Germany's Excellence Strategy - EXC 2092 CASA –
390781972).

8. References
[1] Acar, Y., Backes, M., Fahl, S., et al. Comparing the

Usability of Cryptographic Apis. 2017 IEEE
Symposium on Security and Privacy (SP), IEEE
(2017), 154–171.

[2] Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek,
M.L., and Stransky, C. You Get Where You’re
Looking For: The Impact of Information Sources on
Code Security. IEEE Symposium on Security and
Privacy, (2016), 289–305.

[3] Anscombe, F.J. The Transformation of Poisson,
Binomial and Negative-Binomial Data. Biometrika 35,
3/4 (1948), 246.

[4] Arzt, S., Rasthofer, S., Fritz, C., et al. FlowDroid:
Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps.
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, (2014).

[5] Assal, H. and Chiasson, S. Think Secure From the
Beginning: A Survey With Software Developers.
Conference on Human Factors in Computing Systems
(CHI), (2019).

[6] Backes, M., Bugiel, S., and Derr, E. Reliable Third-
Party Library Detection in Android and Its Security
Applications. Proceedings of the ACM Conference on
Computer and Communications Security, (2016), 356–
367.

[7] Bai, J., Wang, W., Qin, Y., Zhang, S., Wang, J., and
Pan, Y. BridgeTaint: A Bi-Directional Dynamic Taint
Tracking Method for JavaScript Bridges in Android
Hybrid Applications. IEEE Transactions on
Information Forensics and Security 14, 3 (2019), 677–
692.

[8] Becker, I., Parkin, S., and Sasse, M.A. Finding
Security Champions in Blends of Organisational
Culture. Proceedings 2nd European Workshop on
Usable Security, (2017).

[9] Bell, L., Brunton-Spall, M., Smith, R., and Bird, J.
Agile Application Security: Enabling Security in a
Continuous Delivery Pipeline. O’Reilly, Sebastopol,
CA, 2017.

[10] Caputo, D.D., Pfleeger, S.L., Sasse, M.A., Ammann,
P., Offutt, J., and Deng, L. Barriers to Usable
Security? Three Organizational Case Studies. IEEE
Security and Privacy 14, 5 (2016), 22–32.

[11] CONSORT. Checklist of Information to Include When
Reporting a Randomized Trial. 2010, 11–12.
http://www.consort-statement.org/consort-2010.

[12] Coopamootoo, K.P.L. and Gross, T. A Codebook for
Evidence-Based Research: The Nifty Nine
Completeness Indicators. Newcastle, 2017.

[13] Date, S. The F-Test for Regression Analysis - Towards
Data Science. https://towardsdatascience.com/fisher-
test-for-regression-analysis-1e1687867259.

[14] Deborah J. Rumsey. Statistics Essentials For
Dummies. Wiley, For Dummies, 2019.

[15] Derr, E., Bugiel, S., Fahl, S., Acar, Y., and Backes, M.
Keep Me Updated: An Empirical Study of Third-Party
Library Updatability on Android. Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security - CCS ’17, ACM Press
(2017), 2187–2200.

[16] Egelman, S. and Peer, E. Scaling the Security Wall :
Developing a Security Behavior Intentions Scale
(SeBIS). Conference on Human Factors in Computing
Systems (CHI2015), (2015).

[17] Eichberg, M. and Hermann, B. A Software Product
Line for Static Analyses: The OPAL Framework.
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI) 2014-June, June (2014).

[18] Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S.
A Study of Android Application Security. Proceedings
of the 20th USENIX conference on Security, (2011).

[19] European Commission. General Data Protection
Regulation (GDPR). 2019.
https://ec.europa.eu/info/law/law-topic/data-
protection_en.

[20] Fahl, S., Harbach, M., Muders, T., Smith, M.,
Baumgärtner, L., and Freisleben, B. Why Eve and
Mallory Love Android: An Analysis of Android SSL
Security Categories and Subject Descriptors.
Proceedings of the 2012 ACM conference on
Computer and communications security - CCS ’12,
ACM Press (2012).

[21] Fowler, F.J. Survey Research Methods. Sage.
[22] Glanz, L., Amann, S., Eichberg, M., et al. CodeMatch:

Obfuscation Won’t Conceal Your Repackaged App.
Proceedings of ESEC/FSE’17, (2017), 638–648.

302 29th USENIX Security Symposium USENIX Association

[23] Haney, J.M. and Lutters, W.G. The Work of
Cybersecurity Advocates. Proceedings of the 2017
CHI Conference Extended Abstracts on Human
Factors in Computing Systems - CHI EA ’17, ACM
Press (2017), 1663–1670.

[24] Kline, T. Classical Test Theory: Assumptions,
Equations, Limitations, and Item Analyses. In
Psychological Testing: A Practical Approach to
Design and Evaluation. SAGE Publications, Inc.,
Thousand Oaks, California, 2005.

[25] Kluyver, T., Ragan-kelley, B., Pérez, F., et al. Jupyter
Notebooks: A Publishing Format for Reproducible
Computational Workflows. In Positioning and Power
in Academic Publishing: Players, Agents and Agendas.
IOS Press, 2016, 87–90.

[26] Kruger, S., Nadi, S., Reif, M., et al. CogniCrypt:
Supporting Developers in Using Cryptography. ASE
2017 - Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software
Engineering, (2017), 931–936.

[27] Li, L., Bartel, A., Bissyandé, T.F., et al. IccTA:
Detecting Inter-Component Privacy Leaks in Android
Apps. Proceedings - International Conference on
Software Engineering 1, (2015), 280–291.

[28] Li, L., Bissyandé, T.F., Papadakis, M., et al. Static
Analysis of Android Apps: A Systematic Literature
Review. Information and Software Technology 88,
(2017), 67–95.

[29] McDaniel, P. and Enck, W. Not So Great
Expectations: Why Application Markets Haven’t
Failed Security. IEEE Security & Privacy Magazine 8,
5 (2010), 76–78.

[30] Nayak, K., Marino, D., Efstathopoulos, P., and
Dumitraş, T. Some Vulnerabilities Are Different Than
Others: Studying Vulnerabilities and Attack Surfaces
in the Wild. International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), (2014).

[31] O’Brien, R.M. The Use of Pearson’s with Ordinal
Data. American Sociological Review 44, 5 (1979),
851–857.

[32] Oliveira, D., Rosenthal, M., Morin, N., Yeh, K.-C.,
Cappos, J., and Zhuang, Y. It’s the Psychology Stupid:
How Heuristics Explain Software Vulnerabilities and
How Priming Can Illuminate Developer’s Blind Spots.
Proceedings of the 30th Annual Computer Security
Applications Conference (ACSAC14), (2014).

[33] Oltrogge, M., Derr, E., Stransky, C., et al. The Rise of
the Citizen Developer: Assessing the Security Impact
of Online App Generators. Proceedings - IEEE
Symposium on Security and Privacy, IEEE (2018),
634–647.

[34] OWASP. Mobile Security Project - Top Ten Mobile
Risks.
https://www.owasp.org/index.php/Projects/OWASP_
Mobile_Security_Project_-_Top_Ten_Mobile_Risks.

[35] Pal, S. The Assumptions in Linear Correlations.
Helpful Stats, 2017.
https://helpfulstats.com/assumptions-correlation/.

[36] Presser, S., Couper, M.P., Lessler, J.T., et al. Methods
for Testing and Evaluating Survey Questions. Public
Opinion 68, 1 (2004), 109–130.

[37] Qualtrics. Qualtrics Survey Service.
https://www.qualtrics.com/.

[38] Rasthofer, S., Arzt, S., Hahn, R., Kolhagen, M., and
Bodden, E. Black Hat 2015: (In)Security of Backend-
as-a-Service. 2015.
http://bodden.de/pubs/rah+15backend.pdf.

[39] Reyes, I., Wijesekera, P., Reardon, J., et al. Won’t
Somebody Think of the Children? Examining COPPA
Compliance at Scale. Proceedings on Privacy
Enhancing Technologies 2018, 3 (2018), 63–83.

[40] Rumsey, D. Statistics II for Dummies. Wiley,
Indianapolis, 2009.

[41] Safavian, S.R. and Landgrebe, D. A Survey of
Decision Tree Classifier Methodology. IEEE
Transactions on Systems, Man and Cybernetics 21, 3
(1991), 660–674.

[42] Senarath, A. and Arachchilage, N.A.G. Why
Developers Cannot Embed Privacy into Software
Systems? Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software
Engineering (EASE18), (2018), 211–216.

[43] Stack Overflow. Developer Survey Results 2019.
2019. https://insights.stackoverflow.com/survey/2019.

[44] Stevens, S.S. On the Theory of Scales of
Measurement. Science 103, 2684 (1946), 677–680.

[45] Such, J.M., Gouglidis, A., Knowles, W., Misra, G.,
and Rashid, A. Information Assurance Techniques:
Perceived Cost Effectiveness. Computers and Security
60, (2016), 117–133.

[46] The Harris Poll. Norton LifeLock Cyber Safety Insights
Report. 2018.

[47] Turpe, S. The Trouble with Security Requirements.
Proceedings - 2017 IEEE 25th International
Requirements Engineering Conference, RE 2017,
(2017), 122–133.

[48] USCF. Confidence Interval for a Proportion.
http://www.sample-size.net/confidence-interval-
proportion/.

[49] Vaniea, K. and Rashidi, Y. Tales of Software Updates:
The Process of Updating Software. Proceedings for
Computer Human Interaction (CHI) 2016, (2016),
3215–3226.

[50] Wei, F., Lin, X., Ou, X., Chen, T., and Zhang, X. JN-
SAF: Precise and Efficient NDK/JNI-Aware Inter-
Language Static Analysis Framework for Security
Vetting of Android Applications With Native Code.
Proceedings of the ACM Conference on Computer and
Communications Security (CCS18), 1 (2018), 1137–
1150.

USENIX Association 29th USENIX Security Symposium 303

[51] Weir, C., Becker, I., Noble, J., Blair, L., Sasse, M.A.,
and Rashid, A. Interventions for Software Security:
Creating a Lightweight Program of Assurance
Techniques for Developers. Proceedings of the 41st
International Conference on Software Engineering:
Software Engineering in Practice, IEEE (2019).

[52] Weir, C., Hermann, B., Stransky, C., Wermke, D., and
Fahl, S. Public Dataset from Online Android App
Developer Survey. 2019.
https://dx.doi.org/10.17635/lancaster/researchdata/319.

[53] Weir, C., Rashid, A., and Noble, J. I’d Like to Have an
Argument, Please: Using Dialectic for Effective App
Security. Proceedings 2nd European Workshop on
Usable Security, Internet Society (2017).

[54] Wermke, D., Reaves, B., Huaman, N., Traynor, P.,
Acar, Y., and Fahl, S. A Large Scale Investigation of
Obfuscation Use in Google Play. Proceedings of the
34th Annual Computer Security Applications
Conference (ACSAC), (2018), 222–235.

[55] De Win, B., Scandariato, R., Buyens, K., Grégoire, J.,
and Joosen, W. On the Secure Software Development
Process: CLASP, SDL and Touchpoints Compared.
Information and Software Technology 51, 7 (2009),
1152–1171.

[56] Witschey, J., Zielinska, O., Welk, A., Murphy-Hill, E.,
Mayhorn, C., and Zimmermann, T. Quantifying
Developers’ Adoption of Security Tools. Proceedings
of the 2015 10th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2015, ACM Press
(2015), 260–271.

[57] Xie, J., Lipford, H.R., and Chu, B.B.-T. Evaluating
Interactive Support for Secure Programming. SIGCHI
Conference on Human Factors in Computing Systems,
ACM (2012), 2707–2716.

[58] Zhao, Q., Zuo, C., Pellegrino, G., and Lin, Z. Geo-
locating Drivers : A Study of Sensitive Data Leakage
in Ride-Hailing Services. Symposium Network and
Distributed System Security Symposium (NDSS),
February (2019).

Appendix A Analysis Tool Versions
The following are the versions of the tools we used for appli-
cation analysis.

MalloDroid Version Dec 30, 2013
OPAL framework Version 1.0.0
curl Version 7.64.0
openssl Version 1.1.1b
FlowDroid Version 2.7.1
LibScout Version 2.3.2
CogniCrypt Version 1.0.0

Appendix B Survey Questions
The following are the survey questions. Some questions were
skipped if appropriate (marked with *). The answer formats
are abbreviated as follows:

YN Yes or No
SS Single Selection.
MS Multiple Selection
LSS Likert-Style Scale: Extremely, though to

Not at all.
0-100 Slider selecting an integer
N Integer

In addition, ‘?’ indicates an ‘I don’t know’ option, and ‘O’ an
‘Other’ option, where the participant could enter open text. In
Q10 and Q21, the option descriptions give the encodings used
in Appendix C .

Q1-Q3 were text-only statements.

Q4 Are you working in a team with others, such as develop-
ers, testers, project managers? [YN]

Q5* What is your role? [SSO?]
Programmer, Tester, Project Manager, Non-Spe-
cific

Q6* What other roles apart from yourself are there in your
team? [MS?]

Programmer, Tester, Project Manager, Non-Spe-
cific

Q7* About how many people (including developers, project
managers, testers) are there in your team? [N]

Q8 Please select all the ways you use to develop Android
apps [MSO]

Native Java, JavaScript, C#, Dart, Python, Kotlin,
Lua, Native C++

Q10 How often did you release a new version of your app
over the past two years? Please give your best estimate; if you
have more than one app, please answer for that app that was
most frequently updated. [SS]

Never (0), Annually (1), Quarterly (4), Monthly
(12), More frequently (24)

Q11* Over the last one to two years, what content has been
in your app updates (%)?

New features [0-100]
Non-security bug fixes [0-100]
Security bug fixes [0-100]
Third party library updates [0-100]
Regular maintenance and refactoring [0-100]

Q12 How important is each of the following for your app(s)?
Runs on many different devices [LSS]
Secure against malicious attackers [LSS]
Protects users' privacy [LSS]
Easy to use [LSS]
Supports many features [LSS]
Runs smoothly [LSS]

Q13 How important is security for sales? [LSS]

304 29th USENIX Security Symposium USENIX Association

Q14 How knowledgeable do you consider yourself about in-
formation security? [LSS]

Q15 Does your app development ever get support from pro-
fessional security experts? [YN?]

Q16* Who are these professional security experts (on
team/external)? [SS]

Q17* What support do you get from them? Please select all
that apply [MSO]

Penetration testing Security training
Audits Design reviews
Working on team I don't know

Q18* About how often do you get support from them? [SS?]
Continuously, Weekly, Monthly, Quarterly, Yearly

Q19 Which of the following have led to changes in the secu-
rity of your app(s) in the past one to two years? [MSO]

Decision from management
Security crisis within your organization
Media coverage about app security
Something bad happening to a competitor
Pressure from a partner company
Drive from product or sales team
Pressure from customers
Developer initiative
GDPR requirements
Something bad almost happening to your organiza-
tion

Q20* What changes have you made as a result of GDPR re-
quirements? [MSO]

Addition of popup dialog(s)
Removal of analytics or advertising based on it
Adding or changing privacy policy

Q21 How much do you use each of the following techniques
to find security problems? [SS for each:

Every build (4), Every release (3), Once or occa-
sionally (2), Decided not to use (1), Haven’t consid-
ered it (0).]

Producing a threat assessment for the app
Scanning code with an automatic code review tool
Using a tool to scan for libraries with known vulnerabili-
ties
Code review by someone other than the developer
Penetration testing

Q22 What other techniques do you use (if any)? [O]

23 Do you have a security champion within your team? A
security champion -- or security hobbyist -- is a non-expert,
who takes a particular interest in security. [YN?]

Q24 For how many years have you been developing Android
apps? [N]

Q25 For how many years have you been programming in
general (not just for Android)? [N]

Q26 About how many Android apps have you helped develop
in total? [N]

Q27 Is developing Android apps your primary job? [YN]

Q28 Have you contributed to an open source project in the
past year? [YN]

Q29 To which gender identity do you most identify? [SS]:
Female, Non-binary, Male, Prefer not to say

Q30 What is the main spoken language you use at work? [SS]
English, Chinese, Spanish, Arabic, German, French,
Other

Q31 In which country do you currently reside? [SS]

Appendix C Calculation of Scores
This section describes how scores were calculated from the
survey answers.

Likert-Style Scales were encoded as:
Extremely … (4), Very … (3), Moderately … (2),
Slightly …(1), Not … at all (0)

Assurance Technique Score: sum of all five sub-questions of
Q21, each encoded as shown.

Developer Knowledge Score: LSS encoding of Q14

Expertise Support Score: as the following table.

Q23: \ Q15: No Yes
No 0 2
Yes 1 3

Requirements Score: sum of LSS encodings for Q12 (Secure
against malicious attackers), Q12 (Protects users' privacy)
and Q13

Security Update Frequency Score: This required an Update Fre-
quency Estimate of Q10 encoded as shown multiplied by Q11
(Security bug fixes) and divided by 100. The score was Log
(this value plus 1).

Appendix D Model Comparison
To compare a decision tree model, we used the Python scikit-
learn library’s DecisionTreeRegressor, compared with Stats-
Models’ OLS (Ordinary Least Squares).

We compared each pair of models using the F-Test calcula-
tion [13], taking the number of ‘leaf nodes’ in the decision
tree as the degrees of freedom for that model in the F-Test.
Applying the Bonferroni correction [40], we took the re-
quired Alpha P-value for significance as 0.01. The calculated
P-values values ranged from 0.2 to 0.5, and did not approach
that value.

USENIX Association 29th USENIX Security Symposium 305

