
Received 28 June 2024, accepted 30 July 2024, date of publication 5 August 2024, date of current version 22 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3439095

‘‘You Received $100,000 From Johnny’’:
A Mixed-Methods Study on Push
Notification Security and Privacy
in Android Apps
THOMAS NETELER 1, SASCHA FAHL 2, AND LUIGI LO IACONO 1
1Department of Computer Science, H-BRS University of Applied Sciences, 53757 Sankt Augustin, Germany
2CISPA Helmholtz Center for Information Security, 30159 Hannover, Germany

Corresponding author: Thomas Neteler (thomas.neteler@h-brs.de)

This work was supported in part by Bonn-Rhein-Sieg University of Applied Sciences.

ABSTRACT Push notifications are widely used in Android apps to show users timely and potentially
sensitive information outside the apps’ regular user interface. Google’s default service for sending push
notifications, Firebase Cloud Messaging (FCM), provides only transport layer security and does not offer
app developers message protection schemes to prevent access or detect modifications by the push notification
service provider or other intermediate systems. We present and discuss an in-depth mixed-methods study of
push notification message security and privacy in Android apps. We statically analyze a representative set
of 100,000 up-to-date and popular Android apps from Google Play to get an overview of push notification
usage in the wild. In an in-depth follow-up analysis of 60 apps, we gain detailed insights into the leaked
content and what some developers do to protect the messages. We find that (a) about half of the analyzed
apps use push notifications, (b) about half of the in-depth analyzed messaging apps do not protect their push
notifications, allowing access to sensitive data that jeopardizes users’ security and privacy and (c) the means
of protection lack a standardized approach, manifesting in various developer-defined encryption schemes,
custom protocols, or out-of-band communication methods. Our research highlights gaps in developer-centric
security regarding appropriate technologies and supporting measures that researchers and platform providers
should address.

INDEX TERMS Push notifications, end-to-end security, android, FCM, intermediate systems.

I. INTRODUCTION
Mobile applications use push notifications to inform their
users about time-critical information, like received messages,
without them having to open the apps actively. Such contexts
require ‘‘pushing’’ data from the app server out to its
clients. This requires a permanent connection between the
client device and the server, as the server cannot initiate
a connection to a client. Every app that wants to use
push notifications therefore requires such a permanent
connection [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuangqing Wei.

In practice, mobile operating systems provide functions
for push notifications by establishing and maintaining the
connection. This enables notifications even when an app
is not running and allows the multiplexing of notifications
for multiple apps simultaneously. Moreover, this approach
significantly reduces power consumption, as not every app
that requires push notifications needs to open and maintain a
communication connection, as well as a running background
process.

On the other hand, this introduces a third party besides
the app server and client apps: the provider of the push
notification service. It adds an internal device component
(interface for client apps) and an additional server component

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 112499

https://orcid.org/0009-0006-1304-5496
https://orcid.org/0000-0002-5644-3316
https://orcid.org/0000-0002-7863-0622

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

(interface for app server) to the system. On Android, the
Firebase Cloud Messaging (FCM) service from Google is
the default for integrating push notifications into apps.1 FCM
works with the Play Services that handle the on-device
part and are responsible for connection management and
forwarding messages to the corresponding apps.

Android distinguishes between two types of push noti-
fications. ‘‘Notification Messages’’ are processed by the
OS and triggered directly without interacting with the
corresponding app. ‘‘Data Messages’’ are forwarded by
the OS to the corresponding app and are processed there.
Notification Messages cannot be protected by end-to-end
security mechanisms as the OS needs to access the message
content for processing. In contrast, app developers are free
to decide whether they want to implement message-oriented
security when using Data Messages.

A. THREAT MODEL
FCM only secures the transport between its own servers, the
app server, and the client device using TLS (cf. Figure 1).
FCM messages are encoded in the ProtoBuf format, which
does not contain security measures such as encryption or
integrity protection.2 If the developers do not protect the
content of the messages themselves, all push notifications can
be read, manipulated, or suppressed by the service provider.
Neither the client nor the app vendor’s server can prevent
or detect the interception, modification, or suppression
of notifications without further protective measures for
the notification message. Security vulnerabilities, malicious
actors, or law enforcement can exploit such a lack of end-
to-end security to gain access to push notifications. This
poses a serious threat to the security and privacy of app users
if the notifications contain sensitive or private information.
To achieve adequate security and privacy in such cases, app
developers must implement message-oriented protection in
addition to the transport protection mechanisms implemented
by default in the form of TLS.

FIGURE 1. A push notification payload is sent from an app server to a
client device via a push notification service provider, such as FCM.
Although the transport is encrypted, the service provider can still access
the content of the push notification.

B. MOTIVATION
Notification providers on top of OS vendor-specific delivery
mechanisms (like FCM on Android) were explored previ-
ously. They showed data leakage of notification on several
fronts: cloud provider console, other apps on the device,

1The corresponding implementation on Apple systems is not considered.
2https://protobuf.dev/

and data exchange with such host notification providers not
directly visible to the user [2].

Recent discussions about law enforcement access to push
notifications and their metadata showed that there is a
substantial interest in push notification content. Although
the metadata like push tokens or timestamps seems to be
the most interesting data, payload data was also requested
showing that push notification providers store data about their
notifications [3], [4], [5].

Protecting the payload can mitigate leaks of potentially
sensitive information via these providers. Threema even felt
compelled to take a concrete stand on the topic of push
notifications due to these revelations. They directly addressed
their protection mechanisms in their app [6].

As FCM is based on Google’s cloud infrastructure, the
security implications of cloud access also apply to push
notifications. Past leaks of such data may also include
sensitive information used in push notifications [7].

C. RESEARCH GAP
Even though the importance of secure messages with FCM
is high, to our knowledge, there is no overview of securing
mechanisms ‘‘in the wild’’. Some apps directly advertise
mechanisms like ‘‘end-to-end encryption’’ (e2ee), which
implies that messages transmitted via FCM are encrypted.
It is hard for end-users to determine how push notifications
are protected. The most user-facing information regards the
visibility of notifications on the lock screen and is often
labeled with the keyword ‘‘privacy’’ [8]. Pleas to add more
protection in push notification systems even go as far back
as 2014 [9]. Google provided a library for this purpose but
abandoned development shortly after publishing it to the
general public [10].

With this work, we try to understand if real-world Android
apps send sensitive information via push notifications and
how app developers protect their push notifications.

D. RESEARCH QUESTIONS
To shed light on the identified research gap, we design and
conduct various studies to answer the following research
questions:

RQ1 ‘‘How ubiquitous is the use of push notifications in
Android apps?’’We are interested in understanding
the extent to which push notifications are used in
Android apps in practice. In particular, we want
to know if Firebase Cloud Messaging (FCM) from
Google has a dominant position among apps.

RQ2 ‘‘Are there currently any security or data protection
problems with push notifications in practice?’’ Push
notifications are crucial for users’ security and
privacy if they contain unprotected sensitive data.
We are interested in gaining insights into whether
apps consider the specifics of the communication
channel for push notifications and adequately
protect sensitive data from end-to-end.

112500 VOLUME 12, 2024

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

RQ3 ‘‘Can we identify common practices for protecting
push notification messages in Android apps?’’ We
want to find out whether we can identify common
practices and evaluate their characteristics based on
the protection measures found in practice. Based on
the knowledge gained from this research question,
we want to provide software developers with better
support for the protection of push notifications.

E. METHOD SUMMARY
We performed a mixed-methods study to address the above
research questions (cf. Figure 2). First, using experimental
app prototypes, we identify features that allow us to detect the
use of FCM-based push notifications through static analysis
of APKfiles. Based on the derived features, we then statically
analyzed 100,000 Android apps for the use of the push
notification provider FCM, finding that more than half of
them use it. Subsequently, we selected applicable apps from
a subset of 400 apps for an in-depth exploratory manual
analysis. We then used qualitative analysis techniques to gain
insights into the protection of push notification content and
to identify common practices.

FIGURE 2. The analysis is divided into two large blocks using a mix of
methods: phases 1 and 2 answer RQ1 and phase 3 focuses on RQ2 and
RQ3.

F. CONTRIBUTIONS
Conducting the presented mix-methods study, we provide the
following contributions:

1) Large Scale Analysis. We provide a large-scale
overview of how many apps from the Google Play
Store use Firebase Cloud Messaging (FCM) based
on an open data set of 100,000 most-rated apps.
This includes the methods ‘‘Data Message’’ and
‘‘NotificationMessage’’, which are handled differently
by the operating system.

2) In-Depth Investigation of Payloads. An in-depth qual-
itative analysis giving insights into the real-world
content and usage of notification payloads. This
also includes insights about whether sensitive data is
transferred in push notification messages.

3) Common Practices to Protect Payloads. We found
that approaches to protect push notification messages
can be categorized into ‘‘custom protocols’’, ‘‘out-of-
band’’, and ‘‘encryption’’. However, even apps in the
same category often differ in their implementation.

4) Replication package. We provide the data to replicate
our static analysis results and also include our interme-
diate results for the qualitative in-depth analysis.

G. PAPER STRUCTURE
The remainder of this paper is organized as follows:
Section II discusses previous research results regarding
Android security, privacy in relation to push notifications. In
section III we detail the static analysis of 100,000 Android
apps and give an overview of the current usage of FCM in
the wild. Section IV explains the in-depth manual analysis
of 60 apps and shows the results indicating which protection
schemes are used. In section V we discuss the limitations of
our methods, discuss our work in section VI, and conclude
our paper in section VII.

II. RELATED WORK
We discuss related work in four key areas: First, information
leakage to third parties, meaning service providers and
libraries, such as analytics and ads. Second, information
leakage in the context of push notifications. Third, net-
work security concerns possible eavesdropping methods to
obtain sensitive data without direct access to the device
or server components. Fourth, there are challenges in
deploying protection schemes to protect against some of
the previous key areas from the end users’ and developers’
perspectives.

A. LEAKING SENSITIVE PERSONAL INFORMATION TO
THIRD-PARTIES
The realm of on-device privacy leakage is extensively
researched: this includes sensitive data leaking to third
parties by integrating analytics libraries [11], [12]; poor
logging practices [13]; ad libraries [14], [15]; and payment
methods [16], [17] into an app. Other apps on the same device
can leak data by going through side-channels or issues in the
permission system [18]. Push notifications allow apps to read
other apps’ notifications and leak information through the
displayed text [19].

Leaks during data transport through cloud infrastructure
happen when the data is not properly secured, either by
the provider or the app developers. Issues like insufficient
access control can lead to remote control of devices and
sensitive data leaks [20]. The reasons for such issues are often
misconfigured cloud back-ends or app servers, e.g. when
credentials are found in apps that can be used for tasks that
are not meant to be accessible [21], [22].
Our delta: Previous research deliberately excluded transit

notification providers and did not analyze the payloads
of notifications [2]. We look into the payload of push
notifications instead without considering on-device data.
We explicitly only investigate FCM (what they call a ‘‘Transit
Notification Platform’’) and exclude library analysis of other
notification providers.

VOLUME 12, 2024 112501

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

We do not investigate on-device privacy concerns regard-
ing end users (e.g., malicious apps, or sharing a physical
device with others), as the examination is solely focused
on the internal data processing of notification payloads.
However, we are looking into the data shared with the push
notification service provider without exploring the question
of whether or not users perceive it as a problem to their
privacy.

We also excluded the avenue of data leakage from the cloud
providers’ servers. However, it gives motivation for properly
protecting notification payloads. Providers could combine
metadata and sensitive data to create detailed profiles
for apps and users. However, we excluded any analysis
of countermeasures for mitigating metadata transmission
and solely focused on analyzing the payload of push
notifications.

B. USERS’ ISSUES WITH PUSH NOTIFICATIONS
Users perceive the privacy of notifications as the visibility
of notifications on the device itself e.g., on the lock screen
or when giving the device to another person. They associate
privacy with the settings for the visibility and content
of these messages on the screen [8]. A high number of
apps can be found that use aggressive notifications mainly
for advertisement purposes potentially annoying the user
so much that they remove the app [23]. Security issues
come into play when notifications trick users into action by
impersonating other apps e.g., for phishing [24].
Our delta: The perception of end users is irrelevant to

analyzing payloads of notification messages, as protection
methods are not visible to the end users, and they cannot
control protection schemes inside an application. Addition-
ally, this work is out of scope for the design and content
considerations of displaying notifications on end users’
devices.

C. NETWORK SECURITY IN ANDROID APPS
Tracking devices by recording clear-text client certificate
authentication of connections was easy to achieve and had
implications on the development of new TLS versions [25].
But even on encrypted connections, eavesdropping can
enable user tracking by exploiting publicly visible noti-
fication triggers on social networks. Recording, when
notifications are triggered, can correlate devices to users,
circumventing the privacy protection of transport encryp-
tion [26]. Even though using the tor network to transport
push notifications mitigates some of these risks, it incurs
heavy costs even with improvements, e.g., network usage and
battery drainage increase [27].
Our delta: As FCM uses TLS-secured connections,

we consider the potential of leaking private data via
eavesdropping low. It only concerns metadata such as timings
or payload length, but the content is secure from wiretapping
parties. We prioritized push notification service providers as
they have clear-text access to the payload.

D. CHALLENGES OF DEPLOYING PROTECTION SCHEMES
There are tools available for app developers to check their
used libraries for privacy issues [28]. Integrating SDKs from
push service providers can introduce privacy issues, either
by the app developer’s integration of the SDK or internal
issues inside the SDK itself. Nevertheless, 20 % of apps in
the Google Play Store were affected by such issues [29].

Developers need the right tools and knowledge to integrate
protection schemes like e2ee into their software. Such tools
and libraries for developers need improvement [30]. Still,
tools are already available for helping developers using
cryptographic APIs that flag misuse and potential security
vulnerabilities [31]. However, improving the developer
experience can increase the positive influence of real-
world applications of such tools. This requires creating a
better understanding of developers and overcoming wrong
assumptions by us researchers [32].

Developers need to consider end users, as the usability
of e2ee implementations in instant messaging is essential.
End users need to understand it to use it effectively [33].
Sometimes, a wrong perception of such encryption mecha-
nisms can be created by developers who do not consider the
mental models of their users [34]. Often users think that their
messages are not protected well enough and feel vulnerable,
even though the technical implementation protects them [35].
A negative example is email encryption, which has to be

enabled on top of existing infrastructure, and the spread of
encryption is hindered by end-user usability and unawareness
of the issues [36]. From a developer-centered viewpoint,
the same issues arose when SSL was introduced to replace
clear-text transmission [37]. On Android, a similar issue is
certificate pinning, which falls into the responsibility of the
app developers [38].

If we want to introduce a protection scheme, we need to
take a developer-centered view and take the burdens of app
developers into account [39]. This is not limited to library
design and includes usage patterns when adding tools into
existing apps [40]. An ideal approach is similar to a default
option and can be easily integrated into existing development
practices of organizations [41].
Our delta: During the static analysis of apps and the in-

depth analysis, the aspect of end-to-end encryption is touched
upon. During the static analysis, we searched for potential
encryption libraries; during the in-depth analysis, we saw
some protection schemes that included encryption. However,
we only searched for such schemes and did not evaluate
specific encryption methods.

III. USAGE OF PUSH NOTIFICATIONS
In this section, we answer RQ1 and determine the number
of apps that use push notifications via FCM to gain initial
insights into the extent to which push notifications via
Android’s default push service are widespread in practice.
In addition, we are also interested in understanding what type
of push notifications are commonly used. For this purpose,

112502 VOLUME 12, 2024

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

we developed a static analysis pipeline, which we describe in
the following subsections.

A. METHODOLOGY
We developed and followed the methodology shown in
Figure 3 to analyze the use of FCM push notifications
in Android apps. First, we had to develop a method to
determine if an app uses push notifications via Google’s
FCM service. In the absence of available techniques, we used
various self-developed prototype apps to identify and extract
features. Based on these, we developed static analysis tools to
automatically analyze APKs and document whether they use
FCM push notifications and if so, what type of notification
they use.

FIGURE 3. The developed static analysis pipeline to determine the extent
to which push notifications are implemented using Google’s FCM service
and whether they use Notification or Data Messages.

1) APP SELECTION
We used the AndroZoo dataset as the source for APK
files, as it contains versioned APKs with unique identifiers
and allows others to reproduce our work and results [42].
We selected 100,000 apps and considered it to be a reasonable
number because only 13 apps have download numbers below
1,000 and the lowest rating count is 322. This indicates a
saturation of the data set with apps that have at least some
users who also left reviews as an indication of engagement
with the app.

More precisely, we used the AndroZoo dataset of October
26, 2023, which contains 23,518,822 APKs. We reduced
the number of APKs by selecting apps from the Play Store
and choosing the newest version of each app. Additionally,
we only consider apps that received an update in the last
year (in relation to the most recent APK entry in the dataset).
We then sort these apps in descending order according to the
number of ratings (regardless of the actual rating value) and
select the 100,000 apps with the most ratings.3

With this approach, we select apps that are not only fre-
quently downloaded, but also rated by users. This minimizes
the number of apps that are used seldom or not at all resulting
in apps that have a tendency to be used more frequently and
are important enough for users to rate them. The selection
may disadvantage newer apps, as they generally still have few
ratings due to their limited time in the Google Play Store.

3We provide a list of these apps as supplementary material.

Still, our selection ensures that the analyzed apps have a
significant impact on users and provide valuable insights into
the actual app usage of push notifications.

Note that the entries in the AndroZoo dataset only
contain base-APKs, even for app bundles, and therefore no
potential feature modules that could contain code for an app’s
functionality. However, we used hints in the manifest file
contained in the base-APK, so determining FCM usage does
not require feature modules. If we could find indications of
FCM in the manifest, but no code for processing notification
payloads, then either no push notifications are processed or
the code for this is located in a feature module. In both cases,
the corresponding APK is not considered for further analysis.

2) DETERMINE FCM USAGE
Figure 4 shows the process of inspecting the manifest file
and package list of an APK to determine if it uses FCM push
notifications or not.

FIGURE 4. Process flow delineating the steps for detecting the use of
FCM push notifications in an APK.

The manifest file included in the APK of each app contains
entries for permissions and settings, including predefined
directives for FCM. This means we only need to analyze the
static metadata of an app’s APK, so no resource-intensive
code analysis is required, and the analysis of the manifest is
not as error-prone as disassembling an APK.

To ascertain the required manifest entries for FCM,
we referred to the developer documentation and crafted a
sample app from scratch [43]. By systematically adding and
removing FCM directives in the manifest file while verifying
FCM functionality with the prototype app, we pinpointed the
essential keywords for FCM. Ultimately, we identified these
four essential strings to receive push notifications for both
Data Messages and Notification Messages:

• com.google.android.c2dm.intent.
RECEIVE

• com.google.firebase.messaging.
FirebaseMessagingService

• com.google.firebase.MESSAGING_EVENT
• com.google.firebase.iid.
FirebaseInstanceIdReceiver

If all four of these directives are present in the respective
section of the manifest file, the app is technically equipped to
receive push notifications via Google’s FCM.We denote such
apps as ‘‘uses FCM’’. If none of these strings are present, the
app cannot receive any push notifications from FCM and we
declare such apps as ‘‘no FCM’’. If only one, two, or three
strings are present or the list of imported packages contains

VOLUME 12, 2024 112503

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

the name of the FCM library, we declare them as ‘‘maybe’’.
This case occurs when developers either do not correctly
add or remove FCM library code in their apps, so these
apps contain remnants of the keywords, but cannot receive
notifications.

3) CHECK FOR DATA MESSAGE
Next we want to distinguish between ‘‘Data Messages’’
and ‘‘Notification Messages’’. Figure 5 shows the analysis
process of an APK that is categorized as ‘‘uses FCM’’.

FIGURE 5. To determine whether Data or Notification Messages are used,
we check for the presence of the necessary onMessageReceived method
inside the app. Then we determine potential obfuscation techniques by
checking if the required method is visible as plain-text.

To receive the data of a Data Message within
an app, developers must implement a corresponding
method by overwriting the com.google.firebase.
messaging.FirebaseMessagingService.onMessageReceived-
(RemoteMessage) method. They need to declare their
implementation method in the manifest file, so we use it
as the entry point for our analysis. If there is no receiver
method declared in the manifest of the app, notifications
are treated as ‘‘Notification Message’’ by the FCM library
and the operating system and we consider them unprotected.
If an implementation of theonMessageReceivedmethod
is available, we try disassembling it, resulting in the source
code, obfuscated code, or an error.

As the final step requires access to disassembled code,
only successfully disassembled plain-text code is relevant.
We refrain from de-obfuscation, as the analysis aims to
provide a general overview. Our analysis revealed, however,
that the number of non-obfuscated code exceeded the
number of obfuscated code which is in line with previous
research [44].

B. RESULTS
The selection of 100,000 apps produced a set of apps
ranging from all possible number of downloads used by the
Play Store. The distribution of apps (cf. Figure 9 in the
appendix) suggests that all are used by more than one user,
as only 13 apps have sub-thousand download counts. The
minimum number of ratings was 322, and the maximum was
178,886,403.

Note that all apps with Notification Messages are, by def-
inition, unprotected, as no further processing of notifications

takes place inside the app. However, apps with the label Data
Message (with or without obfuscation) can also additionally
receive Notification Messages.

FIGURE 6. The static analysis results show if apps are using push
notifications and how their usage is distributed.

The results show that more than half of all analyzed apps
use FCM in some form (cf. Figure 6). Out of these apps ca.
80 % use Data Messages and some of them even obfuscate
the code in some form. These apps are of interest for further
explorations, as they can implement custom handling of
push notification content and therefore have the ability to
implement protection mechanisms.

All apps using FCM combined have a minimum number of
downloads of 287 billion with aminimum of 1, amaximum of
10 billion, an average of 5.5million, and amedian of 100,000.
Note that the Google Play Store only gives an estimate of the
number of downloads: e.g. ‘‘10B+ Downloads’’ for Google
Chrome. However, some are standard Android apps4 and
therefore have an artificially high number of downloads.

TABLE 1. App categories sorted by their above-average usage of FCM.
‘‘All’’ denotes the percentage of apps in the specified category in the
100,000 apps set. ‘‘use FCM’’ is based on the overall ‘‘uses FCM’’ set,
as seen in Figure 6. Note that all game sub-categories e.g., ‘‘strategy’’,
‘‘racing’’, or ‘‘action’’, are merged into one.

Table 1 shows which categories use FCM disproportion-
ately more or less relative to their distribution among all apps.

4like built-in mail or browser apps.

112504 VOLUME 12, 2024

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

For example, shopping apps make up 2,24 % of all apps, but
out of all apps that use FCM 3,93 % are shopping apps.
The difference between both values shows that apps from
a category tend to use more FCM than apps from other
categories.

Categories are self-selected by app developers: the same
types of apps might be found in different categories, depend-
ing on the assessment of the developers. The most notable
outliers are games that not only use less FCM than their
proportion of all apps suggests but use disproportionately
more Data Messages instead of Notification Messages.
On the other hand, finance apps use FCM more often than
their share suggests.

TABLE 2. FCM usage per download category as displayed in the Play
Store. Note that the number of downloads is not linear and that some
download categories only contain few apps. The age is based on the first
time an app was seen by the crawlers of the AndroZoo data set which has
a lowest value of 2020-05 [42].

Table 2 shows that apps with downloads in the range of
500,000 up to 10million exhibit the lowest percentage of apps
with FCM features found. The extremes of the range with
few or very many downloads seem to have more apps with
FCM usage within their categories, forming a kind of bathtub
shape. The average age of the apps decreases with the number
of downloads. However, the usage of FCM does not seem to
correlate with age (cf. table 7 Appendix B), as the Pearson
value of −0,29 might even suggest a decrease in FCM usage
over time [45].
FCM is widely used, regardless of whether an app has

been downloaded frequently or not and age hardly seems to
have any influence on this, if anything there may be a slight
decline. Note that our data set is skewed towards older apps,
which results in lower sample counts for newer apps (cf.
table 7 Appendix B). We did not analyze if apps generally
add features over their lifetime and cannot say whether FCM
might be a feature that is added to more apps as they get older.

The results show that FCM can be found in every second
app and is, therefore, a worthwhile research target. Its share of
more than 50 % among all apps (apps with and without push
notifications) shows that it can be considered the leader for
push notifications on Android. Ca. 80 % of apps using FCM
seem to use Data Messages, which allow apps to process
their notification payloads and potentially employ protection
schemes. Unfortunately, ca. 30 % of apps using FCM seem
to obfuscate their byte code and, therefore, were not further
analyzed.
RQ1: How ubiquitous is the use of push notifications
in Android apps?

• More than 50 % of the analyzed 100,000 apps
utilize push notifications via Google’s FCM
service.

• Approximately 80 % of the analyzed apps utiliz-
ing FCM employ Data Messages, enabling them
to process the notification payload. The remaining
20 % use clear-text Notification Messages.

• Some categories use disproportionatelymore push
notifications, notably ‘‘finance’’ apps.

IV. IN-DEPTH ANALYSIS OF PUSH NOTIFICATION
CONTENT
Our in-depth analysis aims to answer RQ2 and RQ3:
find common behavior of apps using FCM notifications
and whether they protect their payloads. We test apps by
triggering notifications, capturing their content, analyzing it,
and categorizing them based on our observations of their
network traffic and checking for sensitive information that
might be leaked.

A. METHODOLOGY
The methods used for analyzing apps with a manual analysis
are separated into multiple parts: app selection, a traffic
capture setup, and the per-app analysis flow, including
triggering notifications and analyzing captures. During the
analysis, we took the position of a push notification service
provider. By intercepting the network traffic between a
smartphone and FCM servers, we can analyze the content that
the service provider is also able to see.

The process of triggering app notifications is manual and
cannot be automated. It is unique to every app and depends
on the context of usage. Most apps require an account to be
usable, which also cannot be automated. Accounts must be
createdmanually, often requiring additional verification steps
like mail or SMS verification. Therefore, the methods for
capturing evidence are entirely manual and have influenced
our decisions regarding the selection of apps.

1) SELECT APPS
The manual process of analyzing an app is time-consuming
so we had to make compromises selecting apps. In practice,
we are limited to apps that do not require more information

VOLUME 12, 2024 112505

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

than an e-mail or phone number. In particular, we cannot
easily create accounts in country-locked or financial apps,
which often require specific information or additional
accounts from other services. When we started with six
finance apps using personal accounts from our research
group, we found that it was exceptionally hard to trigger
notifications. Two did show notifications on money transfers
and one used certificate pinning, preventing us from gaining
insights into the network traffic of the app.We concluded that
the effort is too high to be able to analyze a relevant number
of finance apps.
Communication Apps: To select apps for the manual

analysis, we combined two lists derived from the results of the
static analysis filtered for apps using FCM. The first is a list of
the 200 most rated apps from the category ‘‘communication’’
because we suspect instant messaging apps are in this
category. A first quick check of the Play Store showed
several popular chat apps (WhatsApp, Facebook Messenger,
Telegram, and Signal) in this category. We also assume that
apps from this category send more FCM notifications overall,
e.g. each time a message is sent. This assumption would also
mean that a high percentage of notifications going through
FCM services originate from messaging apps, making this
category of apps more vulnerable to a threat from FCM.
We cannot confirm our assumption about messaging apps
using FCM more frequently than other apps as it would
require numbers from internal FCM services, which we
cannot obtain.

We wanted to increase the number of messaging apps as
these typically provide easy account registration and only
require mail or phone numbers. Furthermore, they have
similar workflows for analyzing app notifications: connect
two accounts (which might trigger a notification on ‘‘friend
request’’) and then send a self-selected string to another
account, which triggers a notification.

Additionally, these apps often have similarly sensitive
notification content. They show usernames and user-defined
strings, meaning a high probability of private information.
Popular Apps: The second list contains the 200 most rated

apps from the Play Store, which are not in the categories
‘‘communication’’ or ‘‘games’’. We excluded games for
several reasons: we suspect that triggering notifications is
more complex, they probably do not contain sensitive data in
their notifications, they make up nearly 30 % of apps in the
data set used in the static analysis, they could flood the app
selection, and their use of notifications is disproportionally
low. All these factors make this category an outlier that should
be handled separately.
Combination: We combined both lists and added 11 apps

(cf. table 5), because some researchers could provide private
accounts for these apps. Afterward, we filtered for the
presence of messaging functionality. We also checked if
these apps are localized to specific countries or companies,
meaning no account can be created without additional
resources. This check was done by manually visiting each
app’s Play Store page and looking for hints of such

functionality in images of the interface or the description.
If in doubt, we classified an app as ‘‘yes, containsmessaging’’
rather than not, as we then analyzed it further in the following
steps.

2) CAPTURE NETWORK TRAFFIC
To capture network traffic, which includes the TLS-protected
long-running TCP connection to FCM, we devised a simple
setup with two smartphones connected via a test bed to
the internet. We used Google Pixel 7 devices instead of an
emulator, which allows the usage of real SIM cards in case
the registration requires a phone number.

We used an entity-in-the-middle proxy (mitm-proxy; cf.
Figure 10 in the appendix) to record all network traffic
emitted from a device [46]. The operating system and apps
must use a self-signed certificate of the proxy to decipher
TLS traffic. Therefore, we rooted one of the Android devices
to write this certificate into the system and user stores. The
Play Services and most apps use this store, so we can see
the content of the FCM connection. If an app uses certificate
pinning, the traffic cannot be deciphered, and the mitm-proxy
drops such connections. Apps that use certificate pinning
were not altered and we did not try to remove the pinning.
We kept the smartphones on Android 13 as it was the latest
version during the development of the test bed, and Android
14 made it harder to alter the system certificate store.

During our study, mitm-proxy could not capture all UDP
traffic, so QUIC and, subsequently, HTTP3 traffic could not
be analyzed. As FCM only uses a TCP connection at the time
of writing [47], we do not consider this shortcoming to be of
high relevance. It does, however, prevent us from analyzing
all HTTP traffic and means some out-of-band traffic could
not be thoroughly analyzed.

3) RECORD SCREENS
In addition to the network capture, we also record the
screens of our testing devices. The recordings are started right
before the network capture and can be used to correlate the
timings between both recordings. This enables us to identify
the timestamp of on-screen notifications and the exact text
displayed to the user.5

4) TRIGGER PUSH NOTIFICATIONS
Using two smartphones allows us to install apps and
create accounts on both devices to trigger notifications by
interacting with two accounts from the same service. Figure 7
shows the workflow for analyzing one app and was used by
all researchers to create captures.

The general workflow consists of four phases:
1) app installation
2) account registration
3) recording and triggering of the notification
4) account and app deletion

5Note that the screen recordings show UTC+1, and the traffic captures use
UTC due to a misconfiguration.

112506 VOLUME 12, 2024

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

FIGURE 7. Workflow (from left to right) for triggering a push notification
on one device (trigger) and receiving it on another device (receiver). The
triggering and receiving of a notification take place while a screen
recording and network capture are running.

The app installation is based on three sources. First, we try
to execute the APK from the AndroZoo data set directly,
as this is the same APK file used during the static analysis.
Some apps cannot start when only the base-APK is installed,
they either crash or hang during startup. If this occurs, the
same app will be installed via the official Play Store app.
Sometimes, the Play Store refuses to install an app due to
country- or age restrictions. Then we use the Aurora Store
instead, which proxies the Play Store and uses the same cata-
log. Only three apps failed on all attempts at installing them.

To test whether account registration is possible, we create
the first account on the non-rooted device with unencumbered
access to the internet. If this fails, we exit the analysis early
and do not create captures. It also acts as a baseline if network
issues arise on the rooted device, as they can be quickly ruled
out as originating from the proxy setup.

5) ANALYZE EVIDENCE
We check the network capture for any strings used in the test
run to categorize the data sent via push notifications. These
strings are excerpts of the names used for testing accounts,
e-mails, phone numbers, and the test string ‘‘testmessage’’
for self-selected texts. We then classify the protection of the
payload and whether the notification contains sensitive data.
Network Capture with Notification: We use the screen

recordings to get the timestamps of the creation of a
notification trigger (e.g., sending a text message), the
timestamp when the notification is shown, and the content
of the notification. This allows us to select an appropriate
time frame from the network capture and extract all traffic
related to the notification. Traffic might include messages
on the FCM connection on port 5228 or non-FCM messages
from different TCP or HTTP connections but does not include
UDP traffic apart from DNS queries.

Table 3 shows the process for analyzing the payload
and categorizing its protection. It reveals how we used an
inductive method to categorize the results: every time we
found a new case (row or column) during our analysis,
we added it to the matrix and considered what this meant for
the existing categories.
FCM Contains Plain-Text String: Based on the recorded

notification on the receiving device, we search in FCM

TABLE 3. After extracting the network traffic from a captured notification,
we analyze both FCM and non-FCM traffic separately. Depending on the
combination of the results of both data streams, we categorize apps
differently to see what protection schemes are used (cf. RQ3). Empty cells
are conditions that cannot result in a notification.

messages for the same strings. As FCM uses Protocol Buffers
to encode messages, such strings can be found as clear-
text after the TLS connection is decrypted. If necessary,
we analyze them manually and try to decode their data using
decompression or simple decoding schemes such as base64.
If we find strings, we note what data they hold (username,
text, . . .). Payloads that contain partial clear-text data are
categorized as ‘‘clear-text’’ (∗), but only if this data is deemed
sensitive (see below).
FCMContains Unidentifiable Data: If there are FCMmes-

sages without clear-text, we extract the FCM messages we
deem essential for the notification: Their identifier contains
the app I-D, and the time of the recording corresponds to the
screen recording. Suppose we find meaningful content, i.e.,
binary blobs big enough to at least hold the notification text
in bytes, and no further messages on other connections were
made. We categorize those as using ‘‘encryption’’ (§).
(HTTP) Request in Conjunction with FCM Message:

When a (HTTP) request seems to be triggered by an FCM
message, we check it for the strings in the notification. If true,
we assume an ‘‘out-of-band’’ (†) scheme and categorize it as
such.

If a message is received on a non-FCM connection and
no FCM message is recorded, we categorize it as a ‘‘custom
protocol’’ (‡) regardless of the actual content of the non-FCM
message.

A particular case is an FCM message that does not
trigger a notification on the device. This indicates ‘‘certificate
pinning’’ (¶) when the FCM message triggers an out-of-band
connection that fails due to the proxy. If notifications work
without the proxy, this is an additional indication.
NoFCMorOtherMessages: If we do not see anymessages

in the network capture, but a notification is shown on the

VOLUME 12, 2024 112507

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

screen, we suspect the notification was triggered locally.
It might also indicate an error during recording. Therefore,
any recordings in this case are ‘‘not categorized’’.
What is sensitive information? We define sensitive infor-

mation as data that might relate to a natural person and per-
user-specific information, like user-generated or personalized
content. This includes:

• usernames, names, and other name-like descriptions,
including user IDs.

• user-generated content like user-defined text messages
or similar.

• personalized information like transaction information or
non-general descriptions, including security codes.

We consider other information that seems like general strings
provided to multiple users, e.g., advertisements or welcome
messages without usernames, insensitive. If we recorded
multiple notifications, we combined their sensitive data.

B. RESULTS
Out of the 411 apps considered for qualitative analysis,
we selected 109 apps that might contain some form of
messaging feature and added manually selected apps. 8 apps
offered messaging features on the Play Store page, but a
further look after installation turned them into ‘‘does not
contain messaging feature’’. In total, we manually inspected
113 apps, but could only analyze 60 of them for their push
notification usage (cf. table 4). All other apps either could not
be installed (3; 2.7 %), no user account could be created (18;
15.9 %), or we could not trigger a notification (32; 28.3 %).6

TABLE 4. The categories of payload protection after we did an in-depth
analysis of 113 apps and recorded 60 apps that created notification data.

Half of the 60 apps for which we could trigger and
capture a notification do not protect their messages at
all. Two apps used simple base64 and ProtoBuf encoding
inside the FCM message payload but no further protection
schemes.

1) CUSTOM PROTOCOLS
Most of the apps using some form of protection for their
messages implement a custom protocol. This suggests that
the motivating factor is not the protection of the payload
itself but the decision to use custom protocols as the
transport mechanism throughout the app. Custom protocols
vary widely in their implementations and are app-specific

6The complete list of manually analyzed apps and if a notification could
be triggered is available as supplementary material.

by design. We saw various protocols from text-based to
binary and using well-known encoding schemes like JSON
or ProtoBuf and unknown binary formats. However, at least
four apps use XMPP-derived protocols, a common protocol
for messaging applications.

A special case is FCM as a fallback to this custom protocol:
we analyzed WhatsApp and found that FCM messages are
sent when no XMPP connection can be made between the
app and the application server. Then the FCM message
merely wakes up the app, which then connects via its custom
protocol. If not, a notification with the text ‘‘You may have
new messages’’ indicates this state to the user. Telegram and
Rakuten Viber Messenger showed the same behavior with
their FCM messages.

One app used a custom protocol that sends its notification
payload in clear-text over an unprotected and unsecured TCP
connection. This shows that implementing a custom protocol
does not automatically increase payload protection or can
even be worse than using FCM. A custom protocol puts an
additional burden on the app developer and increases the risk
of implementation issues.

Similarly, another app used a custom protocol to request
the notification information out-of-band, triggered by a
mixedNotification andDataMessage. However, theNotifica-
tion Message contained the message sender’s phone number
in clear-text, while the custom protocol loaded the username
and text message. The final notification only displayed the
username and text message, no phone number was displayed.
Therefore, it was unnecessarily transmitted and unprotected.

2) OUT-OF-BAND REQUESTS AND
END-TO-END-ENCRYPTION
Our analysis’s categorization of out-of-band requests is
somewhat blurry as a custom protocol for doing a follow-
up request after an FCM message is considered out-of-band.
Consider the two cases: (a) a notification is shown on the
screen, no FCM traffic was captured, and traffic on a custom
protocol was captured; and (b) a notification is shown on the
screen, FCM traffic was captured, and traffic on a custom
protocol was captured. Only if the custom protocol seems to
trigger a notification independently of FCM usage (a) do we
categorize it as ‘‘custom protocol’’, otherwise (b) we consider
it to be an out-of-band request. This means some apps using
a custom protocol fall back to an out-of-band scheme where
the FCM message wakes up the app and triggers a new
connection. Custom protocol connections might be dropped
when an app is forced into the background by the operating
system.

Only around 20 % of the apps protect their payloads via
encryption or out-of-band requests. Some notable examples
are Facebook Messenger, which seems to use encryption
for its FCM payload, and Signal, which uses out-of-band
requests combined with nearly empty FCM payloads.

We consider encryption and out-of-band as common
practice categories, as the apps’ behaviors within each group

112508 VOLUME 12, 2024

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

are similar. This contrasts with apps in the custom protocol
group, as each protocol might behave differently. We could
only identify a common practice for messaging-focused apps:
if they use a custom protocol, they often use XMPP or
similar. Additionally, if apps use a custom protocol, they
need to keep a connection open, which the operating system
might suppress to conserve battery. In such cases, apps seem
to fall back to FCM to trigger a reconnect of the custom
protocol.

One notable case is Facebook Messenger: our static
analysis classified it as using Notification Messages, but our
in-depth testing took place on a more recent version from
the Play Store. Between these two analysis, the Facebook
Messenger introduced end-to-end-encryption to its messages,
so the results diverge.7

RQ3: Can we identify common practices for protecting
push notification messages in Android apps?

• If apps protect their payloads, they tend to use
custom protocols instead of only relying on FCM.

• Implementing such custom protocols brings other
issues like unprotected TCP connections or rely-
ing on FCM to wake up an app.

• Only 20 % of apps protect their payloads with
encryption or out-of-band when relying on FCM
to trigger a notification.

• Encryption implementations differ from each
other and do not show a common message format.

3) IMPACT
Our results (cf. table 6 appendix) show that some of the
apps using clear-text have download numbers above one
billion, Instagram even has more than 5 billion. Only two
apps have numbers below 10 million. They accumulate
over 12.8B downloads in the Play Store. The impact of
such apps is high, not only because they transmit sensitive
data like usernames and text messages but also because
there are potentially a huge number of affected users. Most
apps contain chat or email messages i.e., user-defined text.
Figure 8 shows a practical example of such apps: their
notifications contain sensitive information and spill it to
FCM.

4) APPS WITH NOTIFICATION MESSAGES
Our in-depth analysis yielded only two apps that might use
Notification Messages. Therefore, we created another list of
200 apps by filtering their results from the static analysis and
only including apps with Notification Messages, excluding
games.We then checked their Play Store pages for indications
of messenger functionality or indications that they might
handle sensitive data.

We saw 7 apps (without Facebook apps, because of their
false reporting as stated above) that might include messaging

7https://about.fb.com/news/2023/12/default-end-to-end-encryption-on-
messenger/

FIGURE 8. Two example notifications from apps that use clear-text
payloads as seen on a device. This means that the content of the
notification is also visible to the push notification provider.

features or are messaging apps and we suspect that they
might handle usernames and text messages as sensitive
data. We also saw 19 apps that seem to handle financial
information, 3 apps that might handle health data and 4 apps
that might handle some other potentially sensitive topic.
However, it remains unclear if this information is sent via
notifications. However, we did not analyze financial apps
from this list for the same reasons as the previous in-depth
analysis.

We manually analyzed 7 apps with messaging features.
We could only create an account and trigger notifications for
one app. It contains a messaging function and sends username
and chat messages in clear-text. Our results of Notification
Message apps, therefore, remain inconclusive.

5) SENSITIVE PAYLOAD
All 60 apps show some form of sensitive data. There is a
bias in our testing process (cf. section IV-A4), as we tried to
trigger notifications by an action that creates personalized text
deliberately. In contrast, other sources of notifications might
use public information, such as news or advertisements.
However, we could not trigger such sources in the manually
analyzed apps.

Apart from two apps, all included some form of name
or username. 49 (81.7 %) also included a user-defined text
or subject and potentially displayed more sensitive data,
as opposed to a simple username. Additionally, we ana-
lyzed six financial apps (N26, PayPal, and four apps of
German banks: comdirect, Sparkasse, VR-Bank, Postbank),
which contain highly sensitive information: real names and
amounts of money transferred. N26 used encryption and
certificate pinning to protect the notification’s payload.
Still, it did not notify when a proxy was used, potentially
indicating out-of-band usage on top of encryption. PayPal,
on the other hand, did not protect its payload in any
way, and we subsequently categorized it as clear-text.8 Its
payload contained the name of the sender and the exact
amount of money transferred (cf. Figure 8). The other
four apps we analyzed did not trigger a notification on
transfer, even though our testing method was the same as
with N26.

8We responsively disclosed our findings to PayPal.

VOLUME 12, 2024 112509

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

RQ2: Are there any security or data protection prob-
lems with push notifications in practice?

• More than half of analyzed apps do not use any
form of protection.

• All apps we manually analyzed included sensitive
data, ranging from usernames and communication
messages to financial transfer information.

• This allows the push notification service provider
to combine data about users, and leaks at these
providers theoretically put sensitive information at
risk.

V. LIMITATIONS
Both studies have some limitations that should be considered
when discussing their results. The app selection was made
with some trade-offs, as it influences the feasibility of some
analyses.

A. USAGE OF PUSH NOTIFICATIONS
The static analysis has limitations concerning the app
selection and the specifics of our app analysis. Our approach
was deliberately kept simple, as the only goal was to get a
rough overview of the subject.

1) APP SELECTION
The selection of apps is biased towards apps that are used
by many users. Selecting apps randomly would give a more
representative example of the overall state, but fails to take
the impact to users into account.

As the number of downloads is only available as a rough
estimate and using it would favor pre-installed apps, we chose
to use the number of ratings of an app instead. This filters
apps that generate user feedback, whether good or bad,
and we think it sufficiently represents importance to the
users. Although the selection based on ratings might penalize
newcomer apps (i.e. apps that had high growth in the last
year of the data set), the high number of analyzed apps also
includes apps with low download numbers, indicating that we
saturated the data set.

2) STATIC ANALYSIS
Although the strings for FCM usage are systematically
derived from a real prototype app, they only confirm the
theoretical usage of FCM per app. If an app employs a library
for push notifications, it remains unclear if all detected apps
use FCM in a meaningful way.

A data flow analysis could have provided more insights
into payload protection schemes by statically analyzing the
apps. However, it would be difficult to identify the specific
usage patterns that apps employ to protect their payloads,
as we did not have any prior knowledge about specific
implementations. To mitigate this limitation, we instead used
a qualitative approach via the in-depth analysis of push
notifications.

The AndroZoo data set does not contain metadata about
categories from the Play Store.We crawled this data ourselves
for all 100,000 apps, but 8,669 apps could not be crawled
successfully. Their Play Store pages were removed between
the AndroZoo data set timestamp and our crawling date.

B. IN-DEPTH ANALYSIS OF PUSH NOTIFICATION CONTENT
We selected apps based on our ability to test them for
push notifications, which results in a disproportionally high
number of apps with messaging features. We assume that
such messaging features might include sensitive data, as their
content is user-defined. However, we still based our methods
on the research questions we wanted to answer.

1) APP SELECTION
We included apps that do not focus solely on messaging,
but most apps containing such features are based on social
interaction between multiple users with similar interaction
schemes. This excludes apps that might be interesting from
the perspective of real-world users, such as shopping and
finance apps. Our lists are also biased towards apps rated a
lot in the Play Store, which further reduces representativeness
but increases impact.

2) GATHERING APP DATA
The screen recordings are meant to showwhat the researchers
saw during interaction and notifications, but a few apps use
an Android feature to hide themselves from such recordings.
It hindered us from getting exact timestamps of notifications
so that we could only guess which messages in the network
capture correspond to which notification.

The entity-in-the-middle approach for decoding encrypted
network traffic limits the network traffic captures. As this
requires self-signed certificates, we depend on apps to trust
our certificates. We can only reject traffic from apps that use
certificate pinning or their certificate stores, as we did not
modify any apps. Apps combining out-of-band techniques
with pinning cannot be adequately analyzed and we can only
guess that apps use this combination based on incoming FCM
messages that do not trigger a visible notification.

Apps that primarily use a custom solution to trigger
notifications might use FCM as a fallback option, which
potentially exposes sensitive data only in specific network
environments. We only investigated such cases for the most
popular apps using custom protocols, so we might have
missed some edge cases.

3) TRIGGER PUSH NOTIFICATIONS
We trigger push notifications by using two accounts in the
same app on different devices. This limits our testing to
apps that allow account creation via Google account, mail,
or phone number. We excluded apps that do not allow
two accounts to be linked or send messages/transactions
between accounts. During analysis, some apps do not show
any notifications even after several attempts, so it is at the
researcher’s discretion to cancel the analysis of an app when

112510 VOLUME 12, 2024

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

notifications can be triggered. Therefore, we might exclude
apps that exhibited technical problems during our testing or
contained bugs preventing us from using them correctly.

4) ANALYSIS
Our analysis is based on previously acquired artifacts,
limiting us to this data. We cannot fully reproduce issues
regarding certificate pinning, as our proxy did not record
failed TCP connections. Therefore, we can only guess that an
app might use out-of-band requests with certificate pinning
when we do not see any notification but an FCM message.

The analysis of the recorded artifacts follows specific
steps, but some are executed at the researcher’s discretion.
This includes analyzing payloads not transmitted in plain
text in notifications when we had to reconstruct the content
manually. If we could not decode the data, we might
erroneously consider it encrypted. We also did not evaluate
any encryption schemes or test them for vulnerabilities.

VI. DISCUSSION
We discuss our ethical considerations and findings related to
our research questions and put them into context with related
work.

A. ETHICS
Our studies have no human subjects, and apart from
researchers, no person or their data was put at risk. Our
first study was based on an open-source data set, so we did
not have to crawl the Play Store and create traffic. We only
crawled the Play Store for metadata and limited our requests
to one per second to limit the drain on resources.

In the second study, we only created user accounts that do
not require personal information to protect the researchers
and the services from false data. We used randomly generated
strings for usernames to reduce the potential of naming
conflicts with real users. Some services block identifiers
for future use, so this reduces the negative impact of such
cases. We also deleted all user accounts as soon as possible
after analysis to reduce the long-term effect of abandoned
accounts.

If we would have found security vulnerabilities during
analysis, we would have disclosed them using responsible
disclosure. We notified financial app providers if we found
clear-text notifications so that they could react if this behavior
was not intended.

B. RESEARCH QUESTIONS
We could answer all of our research questions and the results
allow us to contextualize our questions.
FCM usage: A lot of apps contain code to handle their

push notifications by using FCM. This comes with no
surprise, as this is Google’s built-in default for providing push
messages to apps. As a system component, it enjoys certain
advantages over in-app solutions: it can wake up apps and
its TCP connection is long-lived without aggressive battery-
conserving methods interrupting connectivity. Its prevalence

also shows that push notifications are ubiquitous: it is very
likely to have apps that use push notifications installed,
increasing the potential that some of them contain sensitive
information.

We cannot say precisely how many developers of these
apps directly use the FCM SDK or an abstraction on top of
the FCM SDK, such as additional libraries or services. From
a developer-centered perspective, it would be interesting to
know whether or not developers are aware of the missing
payload protection in their notifications. Most apps use Data
Messages, which enables protection schemes to be integrated,
but it remains unclear if the services and libraries used by
developers expose such features to developers.

Finance apps are an interesting case, as apps from this
category use proportionally more notifications than other
categories and we suspect a high amount of sensitive data
to be present. We analyzed six apps and found one app with
issues, indicating that there can be problems even for widely
used apps. This category warrants an in-depth look, however,
it is also exceptionally difficult to test such apps at scale.
Data protection problems: More than half of the apps

we analyzed sent clear-text push notifications, which leaked
potentially sensitive information to the FCM provider.
We conclude that there are problemswith security and privacy
regarding push notifications in practice, affecting a large
number of users.

We show that we need to further research why apps do
not protect their notifications, as we think that the push
notification provider has no technical reason the be able to
read notification content. If the push notification provider has
access to unprotected payloads, it could even try to alter its
content without the app knowing (maliciously or not). This
might be high-effort exploitation requiring deep access to the
push notification handling process but it could result in subtle
and hard-to-find issues. Messaging apps that use end-to-end
encryption for their messages protect them from the push
notification provider, and others should implement protection
too.
Problems with very sensitive information: A notable case

of a popular app that transfers highly sensitive information
(PayPal) shows that even highly proficient developers do not
seem to be aware of these potential issues. But also highlights
the impact of our findings: even very sensitive information is
not safe from this kind of exposition to the push notification
provider.
Issues when protecting payloads: Three notable examples

show that some developers have issues implementing protec-
tion for their push notifications. One custom protocol uses
TCP without TLS, and another app uses FCM to trigger
out-of-band requests on a custom protocol, but the trigger
notification contains a phone number. Another app uses end-
to-end encryption, but the username is still accessible as
clear-text.

The FCM connection is not protected by certificate
pinning. When an app uses a custom protocol with pinning

VOLUME 12, 2024 112511

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

and uses FCM as a fallback with an encrypted payload,
it circumvents the pinning when the fallback is used.
Common practices of messaging apps: If messaging apps

use a custom protocol, they favor XMPP or something
similar. They use FCM as a fallback, suggesting that the
underlying application architecture uses XMPP. The protocol
is standardized, multiple implementations are available, and
it can be used by a mobile client and other clients. However,
apps that use custom protocols use multiple protocols, and
the app vendor is responsible for their implementation.
They include server and client components and require
additional implementation effort. Therefore, some apps had
implementation issues, indicating that more standardized
solutions might be preferable.

C. COMPARISON TO MESSAGING SECURITY
From a technical perspective, push notification protection
can be achieved by using similar methods to those used by
e2e messaging apps. Apps using e2ee inherently provide
encryption for push notification messages, while others must
add the exact mechanism between the app server and client
devices.

Modern protocols like MLS introduce efficient e2ee even
for big groups of members [48]. One benefit of using FCM’s
push approach is that it retains the ability to send payloads
to many different clients. Such broadcasting behavior is
problematic to protect by other methods, as out-of-band
requests risk denial of service when many clients try to
contact an app server simultaneously. Custom protocols do
not provide a fan-out, as the app server needs to handle many
concurrent connections.

A real-world example of using message encryption at
scale is Web Push. Recent research on this technique did
not show issues with payloads themselves, only web-specific
issues regarding the usage of its APIs and cross-site request
forgery [49]. This is unsurprising, as the corresponding
RFC states that ‘‘messages sent using this protocol can be
secured against inspection, modification, and forgery by a
push service’’ [50]. The FCM platform could benefit from
introducing a similar scheme as a past attempt by Google
demonstrated [10].

Although the metadata was not part of our research, we
can consider two cases concerning payload protection: using
a custom protocol and encryption. When using a custom
protocol to notify a client, FCM is left out, and no metadata is
shared. However, if such an app falls back to FCMmessages,
it still leaks metadata. Using encryption to protect the payload
does not improve any disclosure of metadata to the push
notification provider.

D. RECOMMENDATIONS
We think that to introduce protection to apps that currently
use none at all, it should be as close to a drop-in solution as
possible.

FIGURE 9. Distribution of apps in their minimum number of downloads
categories in our static analysis data set. The minimum number of
downloads as reported by the public Play Store page for each app.

FIGURE 10. The networking capture setup with two smartphones as
boxes on the left. The traffic of the rooted smartphone is routed through
a Wireguard VPN to the mitm-proxy which captures all traffic including
decryption of TLS.

For app developers: Using custom protocols can enhance
the protection by reducing the impact of metadata leakage.
However, similar to out-of-band requests, implementing such
protection schemes requires more changes to an app and
its server-side components than adding opaque encryption.
Opaque encryption in the form of Web Push protocols can be
retrofitted but leaves metadata unprotected.
For push notification platform providers: We suspect

that not all app developers use FCM directly but through
another service orchestrating push notifications. Ideally, such
syndication services could opaquely implement encryption
for app developers. Especially if Web Push is part of the
syndication, it is possible to implement protected one-to-one
notifications like Web Push was integrated.
For researchers: When considering how to improve

the situation, we need to consider developers and their
requirements. Ideally, a solution to a problem would be
a drop-in replacement with no or very small changes to
existing workflows. Adding protection is connected to the
syndication of push notification techniques employed by
different platforms, asmost developers would probably prefer
solutions that unify the handling of notifications on all
platforms. In addition, we did not conduct a study on the

112512 VOLUME 12, 2024

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

TABLE 5. 11 apps that were selected manually, as researchers from our
group could provide private accounts for them.

awareness of developers about issues regarding their push
notifications. We suspect that raising it would help with
distributing solutions.

VII. CONCLUSION
In this work, we performed a static analysis of 100,000
Android apps to investigate the use of push notifications in
the wild and found that about half of these apps use Google’s
FCM for this purpose. We then conducted an in-depth
analysis of 60 apps to determine whether these apps send
sensitive data via push notifications and how they eventually
protect this data. We found that most apps send some form of
sensitive content, that there is neither a standard nor a uniform
approach to protecting notification data, and that more than
half of the apps analyzed use no protection at all.

Our work provides first insights into the end-to-end pro-
tection of notifications that software developers implement
in their apps and is a basis for future work. Our results draw
attention to the security of push notifications as they are used
to transmit potentially sensitive information. Furthermore,
our results show that the protection of notifications often
does not take place, due to many factors such as the
lack of appropriate standards, technologies, frameworks, and
documentation. We have identified these shortcomings and
developer-centric research gaps as major challenges on the
road to wider adoption of end-to-end security in software.

AVAILABILITY
Our static analysis can be completely replicated using our
list of APK hashes, the analysis script we used, and our
app selection based on AndroZoo. For the qualitative study,
we provide the name, version, and hashes of APK files (even
from App Bundles), traffic captures, and screen recordings
of our testing devices showing the exact behavior during
examination. Some screen captures are blurred, and some

TABLE 6. List of apps 30 that use clear-text FCM notifications.

traffic captures are omitted due to private data contained
in the recording. The data is available as supplementary
material.

VOLUME 12, 2024 112513

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

TABLE 7. FCM usage per age of the apps and categorized by month. The
age is based on the first time an app was seen by the crawlers of the
AndroZoo data set which has a lowest value of 2020-05 [42].

APPENDIX A
FIGURES
See Figures 9 and 10.

APPENDIX B
TABLES
See Tables 5–7.

ACKNOWLEDGMENT
The authors would like to thank Dr. Kevin Allix from the
University of Luxembourg for helping to add metadata to
apps from the AndroZoo data set. Arvid Voigt provided
valuable help developing preliminary work of the static and
qualitative analysis methods. They also like to thank Jan
Mohren, Bruce Falke, Mika Dörr, Florian Dehling, and Julius

Roettger for their help in conducting the in-depth analysis of
apps.

REFERENCES
[1] Google LLC. (Apr. 2024). FCM Architectural Overview | Firebase Cloud

Messaging. [Online]. Available: https://firebase.google.com/docs/cloud-
messaging/fcm-architecture

[2] J. Lou, X. Zhang, Y. Zhang, X. Li, X. Yuan, and N. Zhang, ‘‘Devils in
your apps: Vulnerabilities and user privacy exposure in mobile notifi-
cation systems,’’ in Proc. 53rd Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw., Porto, Portugal, Jun. 2023, pp. 28–41. [Online]. Available:
https://ieeexplore.ieee.org/document/10202604/

[3] R. Wyden. (Dec. 2023).Wyden Letter To Department of Justice Regarding
Smartphone Push Notification Surveillance. [Online]. Available:
https://www.wyden.senate.gov/imo/media/doc/wyden_smartphone_push_
notification_surveillance_letter.pdf

[4] A. Couts and L. H. Newman. (Dec. 2023). Police Can SPY on Your IOS
and Android Push Notifications. [Online]. Available: https://www.wired.
com/story/apple-google-push-notification-surveillance/

[5] B. Schneier. (Mar. 2024). Surveillance Through Push
Notifications. [Online]. Available: https://www.schneier.
com/blog/archives/2024/03/surveillance-through-push-notifications.html

[6] Threema GmbH. (Dec. 2023). Push Notifications and Data Privacy.
[Online]. Available: https://threema.ch/en/blog/posts/push-notifications-
and-data-privacy

[7] Y. Jinishian. (Jun. 2018). Thousands of Mobile Apps Leak Sensitive
Data Via Misconfigured Firebase Backends. [Online]. Available:
https://www.linkedin.com/pulse/thousands-mobile-apps-leak-sensitive-
data-via-yves-jinishian

[8] P. Verma and S. Patil, ‘‘Exploring privacy aspects of smartphone
notifications,’’ in Proc. 23rd Int. Conf. Mobile Human-Computer Interact.,
Sep. 2021, pp. 1–13, doi: 10.1145/3447526.3472065.

[9] M. Backman. (Apr. 2014). Push Messages Isn’t Secure Enough. [Online].
Available: https://medium.com/@BackmaskSWE/push-messages-isnt-
secure-enough-69121c683cc6

[10] G. Hogben and M. Perera. (Jun. 2018). Project Capillary: End-to-
end Encryption for Push Messaging, Simplified. [Online]. Available:
https://android-developers.googleblog.com/2018/06/project-capillary-
end-to-end-encryption.html

[11] X. Liu, J. Liu, S. Zhu, W. Wang, and X. Zhang, ‘‘Privacy risk analysis
and mitigation of analytics libraries in the Android ecosystem,’’ IEEE
Trans.Mobile Comput., vol. 19, no. 5, pp. 1184–1199,May 2020. [Online].
Available: https://ieeexplore.ieee.org/document/8660581/

[12] X. Liu, S. Zhu, W. Wang, and J. Liu, ‘‘Alde: Privacy risk analysis of
analytics libraries in the Android ecosystem,’’ in Security and Privacy in
Communication Networks (Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering),
vol. 198, R. Deng, J. Weng, K. Ren, and V. Yegneswaran, Eds., Cham,
Switzerland: Springer, 2017, pp. 655–672, doi: 10.1007/978-3-319-59608-
2_36.

[13] R. Zhou, M. Hamdaqa, H. Cai, and A. Hamou-Lhadj, ‘‘MobiLogLeak: A
preliminary study on data leakage caused by poor logging practices,’’ in
Proc. IEEE 27th Int. Conf. Softw. Anal., Evol. Reengineering (SANER),
London, ON, Canada, Feb. 2020, pp. 577–581. [Online]. Available:
https://ieeexplore.ieee.org/document/9054831/

[14] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter,
‘‘Free for all! Assessing user data exposure to advertising
libraries on Android,’’ in Proc. Netw. Distrib. Syst. Secur. Symp.,
San Diego, CA, USA, 2016, pp. 1–15. [Online]. Available:
https://www.ndss-symposium.org/wp-content/uploads/2017/09/free-
for-all-assessing-user-data-exposure-advertising-libraries-android.pdf

[15] W. Meng, R. Ding, S. P. Chung, S. Han, and W. Lee, ‘‘The price of
free: Privacy leakage in personalized mobile in-app ads,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., San Diego, CA, USA, 2016, pp. 1–15. [Online].
Available: https://www.ndss-symposium.org/wp-content/uploads/2017/
09/price-of-free-privacy-leakage-personalized-mobile-in-app-ads.pdf

[16] W. Yang, Y. Zhang, J. Li, H. Liu, Q.Wang, Y. Zhang, and D. Gu, ‘‘Showme
the money! Finding flawed implementations of third-party in-app payment
in Android apps,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., San Diego,
CA, USA, 2017, pp. 1–15.

[17] S. Bojjagani, V. N. Sastry, C.-M. Chen, S. Kumari, and M. K. Khan,
‘‘Systematic survey of mobile payments, protocols, and security infrastruc-
ture,’’ J. Ambient Intell. Humanized Comput., vol. 14, no. 1, pp. 609–654,
Jan. 2023, doi: 10.1007/s12652-021-03316-4.

112514 VOLUME 12, 2024

http://dx.doi.org/10.1145/3447526.3472065
http://dx.doi.org/10.1007/978-3-319-59608-2_36
http://dx.doi.org/10.1007/978-3-319-59608-2_36
http://dx.doi.org/10.1007/s12652-021-03316-4

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

[18] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, ‘‘50 ways to leak your data: An exploration of
apps’ circumvention of the Android permissions system,’’ in Proc. 28th
USENIX Secur. Symp. Santa Clara, CA, USA, Aug. 2019, pp. 603–620.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity19/
presentation/reardon

[19] Y. Li, Z. Yang, Y. Guo, X. Chen, Y. Agarwal, and J. I. Hong, ‘‘Automated
extraction of personal knowledge from smartphone push notifications,’’
in Proc. IEEE Int. Conf. Big Data, Seattle, WA, USA, Dec. 2018,
pp. 733–742.

[20] T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang, and X. Han,
‘‘Mayhem in the push clouds: Understanding and mitigating security
hazards in mobile push-messaging services,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. USA: ACM, Nov. 2014, pp. 978–989, doi:
10.1145/2660267.2660302.

[21] B. F. Demissie and S. Ranise, ‘‘Assessing the effectiveness of the
shared responsibility model for cloud databases: The case of Google’s
firebase,’’ in Proc. IEEE Int. Conf. Smart Data Services (SMDS),
Chicago, IL, USA, Sep. 2021, pp. 121–131. [Online]. Available:
https://ieeexplore.ieee.org/document/9592496/

[22] C. Zuo, Z. Lin, and Y. Zhang, ‘‘Why does your data leak? Uncov-
ering the data leakage in cloud from mobile apps,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), San Francisco, CA, USA, May 2019,
pp. 1296–1310. [Online]. Available: https://ieeexplore.ieee.org/document/
8835301/

[23] T. Liu, H. Wang, L. Li, G. Bai, Y. Guo, and G. Xu, ‘‘DaPanda:
Detecting aggressive push notifications in Android apps,’’ in
Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
San Diego, CA, USA, Nov. 2019, pp. 66–78. [Online]. Available:
https://ieeexplore.ieee.org/document/8952509/

[24] Z. Xu and S. Zhu, ‘‘Abusing notification services on smartphones for
phishing and spamming,’’ in Proc. 6th USENIX Workshop Offensive
Technol., Bellevue, WA, USA, Aug. 2012, pp. 1–11. [Online].
Available: https://www.usenix.org/conference/woot12/workshop-
program/presentation/Xu

[25] M. Wachs, Q. Scheitle, and G. Carle, ‘‘Push away your privacy: Precise
user tracking based on TLS client certificate authentication,’’ in Proc.
Netw. TrafficMeas. Anal. Conf. (TMA), Dublin, Ireland, Jun. 2017, pp. 1–9.
[Online]. Available: http://ieeexplore.ieee.org/document/8002897/

[26] P. Loreti, L. Bracciale, and A. Caponi, ‘‘Push attack: Binding virtual and
real identities using mobile push notifications,’’ Future Internet, vol. 10,
no. 2, p. 13, Jan. 2018. [Online]. Available: https://www.mdpi.com/1999-
5903/10/2/13

[27] S. A. Kollmann and A. R. Beresford, ‘‘The cost of push notifi-
cations for smartphones using tor hidden services,’’ in Proc. IEEE
Eur. Symp. Secur. Privacy Workshops, Apr. 2017, pp. 76–85. [Online].
Available: http://ieeexplore.ieee.org/document/7966975/

[28] C. Schindler, M. Atas, T. Strametz, J. Feiner, and R. Hofer, ‘‘Privacy
leak identification in third-party Android libraries,’’ in Proc. 7th Int.
Conf. Mobile Secure Services, Gainesville, FL, USA, Feb. 2022, pp. 1–6.
[Online]. Available: https://ieeexplore.ieee.org/document/9727217/

[29] Y. Chen, T. Li, X. Wang, K. Chen, and X. Han, ‘‘Perplexed messengers
from the cloud: Automated security analysis of push-messaging integra-
tions,’’ in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2015, pp. 1260–1272, doi: 10.1145/2810103.2813652.

[30] J. Smith, L. N. Q. Do, and E. Murphy-Hill, ‘‘Why can’t Johnny
fix vulnerabilities: A usability evaluation of static analysis
tools for security,’’ in Proc. 16th Symp. Usable Privacy Secur.,
Aug. 2020, pp. 221–238. [Online]. Available: https://www.
usenix.org/conference/soups2020/presentation/smith

[31] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. Yao, ‘‘CryptoGuard: High precision detection
of cryptographic vulnerabilities in massive-sized Java projects,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., London, U.K., Nov. 2019,
pp. 2455–2472, doi: 10.1145/3319535.3345659.

[32] I. Ryan, U. Roedig, and K.-J. Stol, ‘‘Unhelpful assumptions in
software security research,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2023, pp. 3460–3474, doi: 10.1145/3576915.
3623122.

[33] A. Herzberg and H. Leibowitz, ‘‘Can Johnny finally encrypt: Evaluating
E2E-encryption in popular IM applications,’’ in Proc. 6th Workshop Socio-
Tech. Aspects Secur. Trust, Los Angeles, CA, USA, Dec. 2016, pp. 17–28,
doi: 10.1145/3046055.3046059.

[34] S. Dechand, A. Naiakshina, A. Danilova, and M. Smith, ‘‘In encryp-
tion we don’t trust: The effect of end-to-end encryption to the
masses on user perception,’’ in Proc. IEEE Eur. Symp. Secur. Pri-
vacy, Stockholm, Sweden, Jun. 2019, pp. 401–415. [Online]. Available:
https://ieeexplore.ieee.org/document/8806742/

[35] R. Abu-Salma, E. M. Redmiles, B. Ur, and M. Wei, ‘‘Exploring
user mental models of end-to-end encrypted communication tools,’’
in Proc. 8th USENIX Workshop Free Open Commun. Internet,
Baltimore, MD, USA, Aug. 2018, pp. 1–8. [Online]. Available:
https://www.usenix.org/conference/foci18/presentation/abu-salma

[36] C. Stransky, O. Wiese, V. Roth, Y. Acar, and S. Fahl, ‘‘27 years and
81 million opportunities later: Investigating the use of email encryption
for an entire university,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
San Francisco, CA, USA, May 2022, pp. 860–875. [Online]. Available:
https://ieeexplore.ieee.org/document/9833755/

[37] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, ‘‘Why eve and mallory love Android: An analysis of Android
SSL (in)security,’’ in Proc. ACM Conf. Comput. Commun. Secur.,
Oct. 2012, pp. 50–61, doi: 10.1145/2382196.2382205.

[38] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl,
‘‘To pin or not to pin—Helping app developers bullet proof
their TLS connections,’’ in Proc. 24th USENIX Secur. Symp.,
Washington, DC, USA, Aug. 2015, pp. 239–254. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/oltrogge

[39] M. Tahaei and K. Vaniea, ‘‘A survey on developer-centred
security,’’ in Proc. IEEE Eur. Symp. Secur. Privacy Workshops,
Stockholm, Sweden, Jun. 2019, pp. 129–138. [Online]. Available:
https://ieeexplore.ieee.org/document/8802434/

[40] M. Gutfleisch, J. H. Klemmer, N. Busch, Y. Acar, M. A. Sasse, and
S. Fahl, ‘‘How does usable security (Not) end up in software products?
Results from a qualitative interview study,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), San Francisco, CA, USA, May 2022, pp. 893–910. [Online].
Available: https://ieeexplore.ieee.org/document/9833756/

[41] H. Assal and S. Chiasson, ‘‘‘Think secure from the beginning’: A
survey with software developers,’’ in Proc. CHI Conf. Human Factors
Comput. Syst., Glasgow Scotland, U.K., May 2019, pp. 1–13, doi:
10.1145/3290605.3300519.

[42] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, ‘‘AndroZoo:
Collecting millions of Android apps for the research community,’’
in Proc. IEEE/ACM 13th Work. Conf. Mining Softw. Repositories
(MSR), Austin Texas, May 2016, pp. 468–471, doi: 10.1145/2901739.
2903508.

[43] Google LLC. (2024). Firebase Cloud Messaging. [Online]. Available:
https://firebase.google.com/docs/cloud-messaging

[44] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang,
and K. Zhang, ‘‘Understanding Android obfuscation techniques: A large-
scale investigation in the wild,’’ in Security and Privacy in Communication
Networks (Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering), vol. 254, R. Beyah,
B. Chang, Y. Li, and S. Zhu, Eds., Cham, Switzerland: Springer, 2018,
pp. 172–192, doi: 10.1007/978-3-030-01701-9_10.

[45] J. Benesty, J. Chen, Y. Huang, and I. Cohen, ‘‘Pearson correlation
coefficient,’’ in Noise Reduction in Speech Processing (Springer Topics in
Signal Processing), vol. 2. Berlin, Germany: Springer, 2009, pp. 1–4, doi:
10.1007/978-3-642-00296-0_5.

[46] A. Cortesi, M. Hils, and T. Kriechbaumer. (2010). Mitmproxy: A
Free and Open Source Interactive HTTPS Proxy. [Online]. Available:
https://mitmproxy.org/

[47] Google LLC. (Dec. 2023). FCM Ports and Your Firewall |

About FCM Messages | Firebase Cloud Messaging. [Online].
Available: https://firebase.google.com/docs/cloud-messaging/concept-
options#messaging-ports-and-your-firewall

[48] R. Barnes, B. Beurdouche, R. Robert, J. Millican, E. Omara, and
K. Cohn-Gordon, The Messaging Layer Security (MLS) Protocol,
document 9420, Jul. 2023, p. 132. [Online]. Available: https://www.rfc-
editor.org/info/rfc9420

[49] A. Carboneri, M. Ghasemisharif, S. Karami, and J. Polakis, ‘‘When push
comes to shove: Empirical analysis of web push implementations in the
wild,’’ in Proc. Annu. Comput. Secur. Appl. Conf., Austin TX USA,
Dec. 2023, pp. 44–55, doi: 10.1145/3627106.3627186.

[50] M. Thomson, Message Encryption for Web Push, document RFC8291,
Nov. 2017. [Online]. Available: https://www.rfc-editor.org/info/rfc8291

VOLUME 12, 2024 112515

http://dx.doi.org/10.1145/2660267.2660302
http://dx.doi.org/10.1145/2810103.2813652
http://dx.doi.org/10.1145/3319535.3345659
http://dx.doi.org/10.1145/3576915.3623122
http://dx.doi.org/10.1145/3576915.3623122
http://dx.doi.org/10.1145/3046055.3046059
http://dx.doi.org/10.1145/2382196.2382205
http://dx.doi.org/10.1145/3290605.3300519
http://dx.doi.org/10.1145/2901739.2903508
http://dx.doi.org/10.1145/2901739.2903508
http://dx.doi.org/10.1007/978-3-030-01701-9_10
http://dx.doi.org/10.1007/978-3-642-00296-0_5
http://dx.doi.org/10.1145/3627106.3627186

T. Neteler et al.: ‘‘You received $100,000 from Johnny’’: Push Notification Security and Privacy on Android

THOMAS NETELER received the B.Sc. and
M.Sc. degrees in media technology from the TH
Köln University of Applied Sciences, Cologne,
Germany.

He is currently a Researcher with the Institute
for Cyber Security and Privacy (ICSP), H-BRS
University of Applied Sciences, Sankt Augustin,
Germany. His research interest includes developer-
centered security, with a focus on the usability of
end-to-end security technologies for developers.

SASCHA FAHL received the Diploma (equivalent
to the Master of Science) degree in computer
science Philips University Marburg, Germany,
in 2010, and the Dr.rer.nat. (equivalent to the
Ph.D.) degree in computer science from Leibniz
University Hannover, Germany, in 2016.

He is currently a tenured Faculty Member
with the CISPA Helmholtz Center for Information
Security and a Full Professor of empirical infor-
mation security with Leibniz University Hannover.

Previously, he was a Professor at Ruhr University Bochum, Germany, and
the Chair of information security at Leibniz University Hannover. He was
an Independent Research Group Leader at CISPA, Saarland University.
He worked at the Chrome Security Team. He was a Researcher at Fraunhofer
FKIE, Bonn.

Prof. Fahl research won the Distinguished Paper Award at IEEE Security
and Privacy, the Best Student Paper Award at IEEE Security and Privacy,
the NSA’s Best Scientific Cybersecurity Paper Competition, and the Google
Faculty Research Award. He is a recipient of the Heinz Maier-Leibnitz Prize
and the ‘‘Curious Mind’’ Award of the Manager Magazin. His web page is
https://saschafahl.de.

LUIGI LO IACONO received the Dipl.-Ing.
(equivalent to the Master of Science) and Dr.-Ing.
(equivalent to the Ph.D.) degrees in computer
science from the University of Siegen, Germany,
in 1999 and 2005, respectively.

He is currently a Professor of information
security with the H-BRS University of Applied
Sciences, Sankt Augustin, Germany, where he is
the Co-Founder and the Heads of the Institute for
Cyber Security and Privacy (ICSP). His research

interest includes security and privacy-enhancing technologies for distributed
software systems with a particular focus on their usability.

112516 VOLUME 12, 2024

