
Unsafe Rust: Conscious Choice or Spiky Shortcut?
Sandra Höltervennhoff†, Philip Klostermeyer†, Noah Wöhler§, Yasemin Acar‡, Sascha Fahl§

†Leibniz University Hannover, {hoeltervennhoff, klostermeyer}@sec.uni-hannover.de
§CISPA Helmholtz Center for Information Security, {noah.woehler, sascha.fahl}@cispa.de

‡George Washington University, acar@gwu.edu

How is Unsafe code perceived 
and utilized?

Is Safe and Unsafe code 
understood correctly?

How is Unsafe code verified for 
security/safety?

What are the consequences when 
Unsafe code is used incorrectly?

Motivation

Research Questions

Methodology Selected Findings
- Rust is designed such that memory 

safety bugs are prevented
- Unsafe Rust grants additional 

capabilities, but lifts safety 
guarantees

- Responsibility of verification on 
developers, raising importance of 
understanding developers’ 
(mis)conceptions and their 
procedures

- Semi-structured online interviews
- Piloting with three participants
- Eligible participants for main study: 

GitHub users with contribution 
towards unsafe code fragments

- Seven interviews conducted so far
- Analysis: Open coding

Perception and Understanding:
“There are guarantees that must be 

upheld that the compiler cannot check”
“[It] provides you with a very limited set of 

mechanisms”
Assumption: “C mode in Rust”

Usage:
- Keys: Isolation of unsafe code, (safe) 

interface, providing documentation

“I don't think too much about running an 
unsafe block to call some graphics APIs”

“I wouldn’t want my unsafe code to run my 
pacemaker”

Guidance:
- Keys: No project-related unsafe 

guidelines or resources

“None of the projects I work on really 
think too much about it”

Misuse & Vulnerabilities:
“You just fill an advisory, do a patch 

release [...] and you move on”

RQ1.

RQ2.

RQ3.

RQ4.


