
Poster: Committed by Accident – Prevention and
Remediation Strategies Against Secret Leakage

Alexander Krause ∗, Jan H. Klemmer †, Nicolas Huaman ∗,
Dominik Wermke ∗, Yasemin Acar ‡, Sascha Fahl ∗

∗CISPA Helmholtz Center for Information Security, Germany, {first.last}@cispa.de
†Leibniz University Hannover, Germany, klemmer@sec.uni-hannover.de

‡George Washington University, USA, acar@gwu.edu

Abstract—Version control systems for source code, such as
Git, are key tools in modern software development environments.
Many open-source projects use online services such as GitHub
or GitLab. Previous work and news articles illustrate that
developers tend to commit code secrets such as private encryption
keys, passwords, or API keys accidentally. However, making
secrets available to the public Internet might have disastrous
consequences, such as leaving systems vulnerable to attacks. In
a mixed-methods study, we surveyed 109 developers, including
50 freelancers from Upwork and 59 developers from GitHub,
with a focus on their strategies for secret leakage prevention and
their secret leakage experiences. We also analyzed 100 online
guidelines for secret leakage prevention and remediation. We find
that 30.3% of our participants have encountered secret leakage in
the past, and the online guidelines we analyzed do not sufficiently
address secret leakage prevention and remediation. We conclude
with recommendations for developers and an outlook on this
research.

I. INTRODUCTION

Version control systems (VCSs) are an essential technology
for collaborative software development in the 21st century,
with Git being the most commonly used tool [1]. Public
online code repository platforms (e. g., GitHub and GitLab)
allow for easy sharing, reviewing, and contributing to soft-
ware projects. In modern development pipelines, software
is commonly directly built, tested, and deployed from these
code repositories. To deploy software on server infrastructure,
automate interactions with third-party services, or handle
authentication, developers need to provide secrets, e. g., cre-
dentials, authentication tokens, or secret keys. However, these
secrets must be protected from accidentally leaking into the
public codebase. This is no straightforward task, as recent
work by Meli et al. has shown that on GitHub thousands
of automatically detectable secrets are leaked every day [2].
GitLab also acknowledges this problem, e. g., by stating: “A
recurring problem [. . .] is that people may accidentally commit
secrets to their remote Git repositories.” [3].

The actual impact of a leaked secret depends on the type of
secret. In some cases, a leak can be highly critical, as in the
case of SolarWinds: A trivial password for their update servers
was publicly pushed to GitHub in 2017. It allowed attackers
to modify production code on SolarWinds’ build server and
distribute vulnerable patches to up to 18,000 customers [4].
The ongoing attack was only discovered two years later by
security researcher Vinoth Kumar [5].

In this work, we investigate approaches to remediate and
prevent code secret leakage with a mixed-method approach to
answer the following research questions:
RQ1:. What code secret management approaches are avail-
able online?
RQ2:. Which approaches to code secret management are
developers using in real-world development?
RQ3:. What are developers’ experiences with secret manage-
ment approaches?

II. METHODOLOGY

We used a mixed-methods approach to answer the research
questions. First, we analyzed 100 online guides for secret
leakage prevention and remediation approaches. Subsequently,
we surveyed 109 developers from Upwork and GitHub about
their experiences with code secret leakage.

A. Guide Analysis

To address RQ1, we analyzed code secret management ap-
proaches present in online resources and guides. Therefore, we
surveyed 18 undergrad CS students to define a search term for
code secret leakage prevention and remediation each, resulting
in 17 distinct queries. We then used Google Search to perform
an online search for each query. In compliance with past
research [6], we only considered the top-five Google search
results. From those, we randomly selected 50 documents
each for prevention and remediation. In total, we reviewed
100 different guides. Three researchers identified prevention
and remediation approaches using iterative categorization [7].

B. Survey

We surveyed a diverse set of developers using an online
questionnaire to answer RQ2 and RQ3. We iteratively devel-
oped the questionnaire and tested it with four usable security
researchers in cognitive walkthroughs. Finally, we piloted
the survey with 11 participants and iteratively improved the
questions. The survey structure has several parts that queried
participants on the following topics subsequently: (1) usage
of source code management and VCS tools, (2) experience
in handling secrets, (3) threat model for secrets, (4) secret
leakage remediation, (5) secret leakage prevention approaches,
and (6) demographics.

https://orcid.org/0000-0003-2993-2568
https://orcid.org/0000-0002-6994-7206
https://orcid.org/0000-0003-2733-5073
https://orcid.org/0000-0001-7167-7383
https://orcid.org/0000-0002-5644-3316

Table I: Demographics of participants from both Upwork and
GitHub as well as both combined.

Upwork GitHub Combined

n = 50 59 109
Gender:

Male 86.0% 88.1% 87.2%
Female 10.0% 1.7% 5.5%
Non-Binary 0.0% 6.8% 3.7%

Age [years]:
Median 29.0 33.0 30.0
Mean 31.3 34.9 33.2
Std. Dev. 8.6 12.7 11.1

Country of Residence:
U.S. 2.0% 32.2% 18.3%
India 20.0% 3.4% 11.0%
Germany 0.0% 18.6% 10.1%
Pakistan 14.0% 3.4% 8.3%
Other1 60.0% 40.7% 49.5%

Development Experience:
< 1 year 6.0% 1.7% 3.7%
1–2 years 16.0% 3.4% 9.2%
2–5 years 42.0% 25.4% 33.0%
> 5 years 36.0% 69.5% 54.1%

1 Other countries are those that occurred overall < 4%.

For the survey, we hired 50 freelance developers on Upwork
and 59 developers on GitHub. We report the participant demo-
graphics in Table I. Overall, the demographics are comparable
to the latest Stack Overflow developer survey [1] in terms of
gender, age, top-3 countries, and education.

Our institution’s ethical review board (ERB) approved the
study. Further, we adhered to the strict German privacy laws
and the General Data Protection Regulation (GDPR). The
Upworkers were rewarded with $25 for their participation.

III. FINDINGS

In the following, we highlight selected (preliminary) results.

Code Secret Leakage Prevelance. We found that 30.3% of
our participants experienced code secret leakage themselves in
the past. Further, 38.5% know others who experienced secret
leakage in the past, as depicted in Figure 1.

0 10 20 30 40 50
Count (n = 109)

Not experienced 57
Know people 42
Experienced 33

Figure 1: Developers reported experience on code secret
leakage in the past or know people who did. We allowed
multiple answers.

Code Secret Management Approaches. In total, we discov-
ered 18 distinct approaches developers used to prevent and
remediate code secret leakage. The attached poster illustrates
the approaches in a table, with additional information on
the prevalence of the approaches in both the survey and the
analyzed guides. The guide analysis revealed that only 29% of
the analyzed resources were about preventing or remediating
code secret leakage. In addition, we found that resources vary
widely in completeness and level of detail, which can make it
difficult for developers to find the right guidance.

IV. RECOMMENDATIONS FOR DEVELOPERS

A. Prevention

We suggest that developers use a combination of different
approaches to decrease the likelihood of code secret leakage.
First, developers should externalize secrets and block secrets to
prevent committing a code secret to publicly available source
code repositories. These approaches can be strengthened by
also applying monitoring, especially in a pre-commit approach
before pushing a commit to the server. Sometimes, developers
need to share code secrets through the repository with others.
In that particular case, developers should use encrypted se-
crets. This approach can also be used preventive, as an attacker
cannot access accidentally published encrypted secrets without
the encryption key.

B. Remediation

Typical steps that should always be taken to effectively
remediate leaked code secrets are renewing or revoking the
secret, analyze leak and using those results revising access
management. We also consider it essential to notify the
concerned roles for legal and ethical reasons, if not to get
the appropriate help from security and privacy experts. We
consider the previous steps necessary because they handle all
consequences of a secret leak. Removal from source code and
cleanup VCS history are important steps. However, they cannot
save a publicly leaked secret, as it might already be disclosed
to crawlers or other users [2]. This empathizes the need to
renew or revoke secrets that have leaked in public spaces.

V. OUTLOOK

Furthermore, we plan to reveal potential factors impacting
code secret leakage, analyze official remediation guidelines
of service providers, and give recommendations for service
providers on improving online guides and provision and exten-
sion of secret scanning. The results also need to be discussed
in terms of usability and adoption. Future work could improve
the understanding of the general causes of code secret leakage.

REFERENCES

[1] Stack Overflow, “Stack Overflow Developer Survey 2021,” 2021, https:
//insights.stackoverflow.com/survey/2021 (visited on 02/01/2022).

[2] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git? charac-
terizing secret leakage in public github repositories.” in NDSS, 2019.

[3] GitLab Inc., “Secret Detection,” https://docs.gitlab.com/ee/user/
application_security/secret_detection/ (visited on 02/01/2022).

[4] I. Jibilian and K. Canales, “The US is readying sanctions
against Russia over the SolarWinds cyber attack.” https:
//www.businessinsider.com/solarwinds-hack-explained-government-
agencies-cyber-security-2020-12 (visited on 02/01/2022).

[5] L. Williams, “The people who live in glass houses are happy the stones
weren’t thrown at them [from the editors],” IEEE Security & Privacy,
vol. 19, no. 3, pp. 4–7, 2021.

[6] B. Pan, H. Hembrooke, T. Joachims, L. Lorigo, G. Gay, and L. Granka,
“In google we trust: Users’ decisions on rank, position, and relevance,”
Journal of computer-mediated communication, vol. 12, no. 3, pp. 801–
823, 2007.

[7] J. Neale, “Iterative categorization (ic): a systematic technique for
analysing qualitative data,” Addiction, vol. 111, no. 6, pp. 1096–1106,
2016.

https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://docs.gitlab.com/ee/user/application_security/secret_detection/
https://docs.gitlab.com/ee/user/application_security/secret_detection/
https://www.businessinsider.com/solarwinds-hack-explained-government-agencies-cyber-security-2020-12
https://www.businessinsider.com/solarwinds-hack-explained-government-agencies-cyber-security-2020-12
https://www.businessinsider.com/solarwinds-hack-explained-government-agencies-cyber-security-2020-12

Committed by Accident – Prevention and Remediation Strategies Against Secret Leakage
Alexander Krause*, Jan H. Klemmer†, Nicolas Huaman*, Dominik Wermke*, Yasemin Acar‡, Sascha Fahl*

*CISPA Helmholtz Center for Information Security, †Leibniz University Hannover, ‡George Washington University
{alexander.krause, nicolas.huaman, dominik.wermke, sascha.fahl}@cispa.de, klemmer@sec.uni-hannover.de, acar@gwu.edu

Are developers well-prepared
to handle secrets in source

code without leaking them to
the public?

Motivation

The State of Secrets Sprawl 2022
GitGuardian, https://s.gwdg.de/LVzYLI

The amount of code secret leaks on
GitHub increased by 125% within one
year (2020 to 2021).

“On average, 3 commits out of 1,000
exposed at least one secret”

Research Questions

1. What code secret management
approaches are available online?

2. Which approaches to code secret
management are developers using in
real-world development?

3. What are developers' experiences
with secret management approaches?

Findings: Guide Analysis

● Only 29% of the analyzed resources were
about preventing or remediating code
secret leakage

● Resources strongly differed in completeness
and level of detail

Methodology

● Analysis of 100 online guidelines for secret
leakage prevention and remediation

● Survey with 109 developers about their
experiences with code secret leakage
○ 50 freelancers from Upwork
○ 59 developers from GitHub

Selected Recommendations

For developers:

● Prevention: Using a combination of different approaches to
decrease the likelihood of code secret leakage.
○ Externalize and block secrets from VCS (e.g., git)
○ Apply monitoring to detect leaks

● Remediation: Always renew or revoke leaked secrets
○ Analyze leak and revise access management
○ Notify concerned roles (e.g., customers or management)

● We discovered 18 approaches in total to prevent and
remediate code secret leakage

Findings: Survey

● 30.3% of our participants encountered code
secret leakage

	Introduction
	Methodology
	Guide Analysis
	Survey

	Findings
	Recommendations for Developers
	Prevention
	Remediation

	Outlook
	References

