POSTER: On the Effect of Security Warnings on
Cryptographic API Misuse

Peter Leo Gorski, Luigi Lo lacono, Yasemin Acar*,
Sebastian Moeller!, Christian Stransky*, Sascha Fahl**
Cologne University of Applied Sciences, *Leibniz University Hannover,
TTechnische Universitaet Berlin, **Ruhr-University Bochum

Abstract—Cryptographic API misuse is responsible for a large
number of software vulnerabilities. In many cases developers
are overburdened by the complex set of programming choices
and their security implications. Past studies have identified
significant challenges when using cryptographic APIs that lack a
certain set of usability features (e. g. easy-to-use documentation or
meaningful warning and error messages) leading to an especially
high likelihood of writing functionally correct but insecure code.

To support software developers in writing more secure code,
this work investigates a novel approach aimed at these hard-to-
use cryptographic APIs. In a controlled online experiment with
53 participants, we study the effectiveness of an API integrated
security advice which informs about an API misuse and places
secure programming hints as guidance close to the developer.
This allows to address insecure cryptographic choices including
encryption algorithms, key sizes, modes of operation and hashing
algorithms with helpful documentation in the guise of warnings.
Whenever possible, the security advice proposes code changes
to fix the responsible security issues. We find that our approach
significantly improves code security. 73% of the participants who
received the security advice fixed their insecure code.

I. INTRODUCTION

A large number of software vulnerabilities is caused by
developers who misuse security APIs [2], [S]. Previous work
identified multiple trouble spots including secure network
connections [3], the use of permissions in mobile apps [4] and
the use of cryptographic APIs [1]. Some of the most serious
data breaches in recent history were caused by not properly
using TLS to secure data in transit or not securely storing data
in rest. Such incidents affect millions or even billions of users
worldwide and jeopardize their security and privacy.

While there is previous work that tries to improve code
security by enhancing API simplicity or by providing IDE
plugins [6], we propose a different and novel approach that
allows providers of existing and future cryptographic APIs
to improve code security. Therefore, they do not have to
change their programming interfaces, rely on the development
and integration of plugins for integrated development envi-
ronments (IDEs) or hope that security of unsafe information
sources such as Stack Overflow becomes better. Instead, we
propose the integration of effective security advice directly into
cryptographic APIs. We develop an API integrated security
advice concept that provides context sensitive help and offers
ready-to-use and secure code snippets to fix security issues.
We implement our approach for Python and the PYCRYPTO
cryptographic API and conduct a between-subjects online

study with 53 experienced Python developers. In the course of
this study we try to answer the following research question:
RQ: Does the API integrated security advice have a significant
effect on code security? With this research question we try to
assess the ability of our approach to improve code security. We
analyze all changes made to the code after a security advice
has been shown. We find that our approach had a significant
positive impact on 73% of our participants who left their code
insecure at the first place: They upgraded bad cryptographic
choices to secure ones.

We find that similar to high quality developer documenta-
tion, good API design and helpful IDE plugins, our approach
has a significantly positive effect on code security, but allows
API providers to improve code security for existing crypto-
graphic APIs in a bottom approach without having to change
API design or relying on third party tools.

II. SECURITY ADVICE

We implemented the security warning concept from above
for a subset of the PYCRYPTO API for the Python program-
ming language. Figure 1 shows a sample security warning
for the insecure RC4 algorithm for symmetric encryption.
To assess API call security, we followed the classification
provided by Acar et al. [1].

The PYCRYPTO patch hooks specific API calls that create
instances of weak cryptographic objects such as the call to
Crypto.Cipher.ARC2.new () which creates a new ci-
pher object that uses the insecure ARC2 algorithm. Whenever
an insecure cryptographic object is created, our patch calls
an advice method that uses contextual information to show a
security warning.

III. DEVELOPER STUDY

We designed an online, between-subjects study to compare
how effectively developers could write correct, secure code
using either PYCRYPTO as a control, or our patched version
of PYCRYPTO with the security intervention. We recruited 53
developers with demonstrated Python experience (on GitHub)
for an online study; we also recruited via mailing lists and
developer forums.

Participants were assigned to complete a short set of
programming tasks; they were randomly assigned either the
control condition that replicated the PYCRYPTO condition of
the Acar et al. 2017 study on cryptographic Python APIs [1],

£\ WARNING
You are using the weak encryption algorithm RC4 {aka ARC4 or ARCFOUR):

File: SecurityAdviceExample.py

Line: 14

Path: PyCryptoSecurityAdvisorPatch/build/lib.macosx-18.18-intel-2.7/
SecurityAdviceExample.py

Function: arcd_example

Code: cipher = ARC4.new(tempkey)

The use of ARC4 puts the processed data's confidentiality at risk and
may lead to data disclosure.

You must not use ARC4 in new designs. Alternatively use AES
{"Crypto.Cipher.AES") in any of the modes that turn it inte a stream
cipher (OFB, CFB, or CTR).

This snippet encrypts the message 'Speak friend and enter.’'
using the AES cipher in Counter (CTR) mode,

a random 256 bit key,

a random nonce/initialization vector (iv)

and a 32 bit block size counter.

from Crypto.Cipher import AES
from Crypto.Util import Counter
from Crypto import Random

plaintext = 'Speak friend and enter.

key = Random.get_random_bytes (32

iv = Random.get_random_bytes(12)

counter = Counter.new(32, iv)

cipher = AES.newl(key, AES.MODE_CTR, counter=counter)
ciphertext = cipher.encrypt{plaintext)

You continue using ARC4 and ignore this security advice. To suppress
this warning insert the following two lines of code before the statement
“cipher = ARC4.newitempkey)" in SecurityAdviceExample.py line 14:

from SecurityAdvisor import Suppress
Suppress.security_advice_arc4()

Background Information:
— The Open Web Application Security Project (OWASP) - Testing for
Weak Encryption (O0TG-CRYPST-284):
https:/ fwww.owasp.org/index. php/Testing_for_Weak_Encryption_{0TG-
CRYPST-204)
— The Internet Engineering Task Force (IETF) - Deprecating RC4 in
all IETF Protocols:
https://tools.ietf.org/html/draft-ietf-curdle-rcd-die-die-die-02

Fig. 1: Security advice for PYCRYPTO triggered by an RC4
usage and displayed in a terminal running python code.

or the PYCRYPTO patch condition, where we tested our
security warning. All participants were given a symmetric
encryption task and a symmetric key generation and storage
task. We examined participants’ submitted code for functional
correctness and security.

Due to the location of our universities, there was no formal
IRB process. We did, however, model our study material and
procedures after an IRB-approved study and adhered to the
strict German data and privacy protection laws.

IV. RESULTS

Participants were generally successful in functionally solv-
ing the tasks, while security results varied across conditions,
the patched condition being an improvement over PYCRYPTO
where applicable. This improvement was pronounced: par-
ticipants who wrote code that triggered a warning message
were 15x as likely to convert it to a secure condition as
opposed to participants who wrote similar insecure code in
the PYCRYPTO condition.

We observed 26.9% secure solutions in the PYCRYPTO
condition; compared with 50.7% in the PYCRYPTO patch
condition. We were not able to obtain a meaningful regression

‘ Secure

F T
Warning 5 ‘ 2; é

TABLE I: Contingency table for secure task solutions and
triggered warnings used in our Fisher’s exact test.

Factor O.R. C.L p-value
Warning displayed 470 [0.04, 492.14] 0.515
Storage Task 0.13 [0.01, 1.25] 0.078
Development experience 1.11 [0.88, 1.39] 0.378

TABLE 1II: Results of the final logistic regression model
examining whether displayed warnings improve task security
in cases where a warning would have been triggered. Odds
ratio (O.R.) indicates relative likelihood of a task being secure.

model, caused by the small number of tasks that triggered and
ended up with insecure code in the PYCRYPTO patch condition
(11), as well as the small number of tasks that would have
triggered a warning but were not modified to be secure in
the PYCRYPTO condition (22). We followed this inconclusive
model up with Fisher’s exact test (cf. Table I, which was
significant (p<0.01), with an odds ratio of 56. The warning
messages were noticed by participants who saw them, which
was clear both from self-reported memory of them as well as
changes in their code: the warning message lead to a change
from initial insecure code to a secure solution in most cases (8
out of 11). Generally, the applicability of the warning message
was limited; it applied to 24 of 44 insecure solutions across
conditions, and was shown in 11 of 22 insecure cases in the
PYCRYPTO patch condition.

REFERENCES

[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky. Comparing the usability of cryptographic APIs. In 2017
IEEE Symposium on Security and Privacy (SP), pages 154-171, 2017.

[2] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical
study of cryptographic misuse in android applications. In Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications
Security, CCS 13, pages 73-84, New York, NY, USA, 2013. ACM.

[3] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja,
A. Bettes, H. Harris, and J. Grimes. Improving ssl warnings: Comprehen-
sion and adherence. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, CHI ’15, pages 2893-2902,
New York, NY, USA, 2015. ACM.

[4] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android
permissions: User attention, comprehension, and behavior. In Proceedings
of the Eighth Symposium on Usable Privacy and Security, SOUPS ’12,
pages 3:1-3:14. ACM, 2012.

[5] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: Validating ssl
certificates in non-browser software. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages
38-49, New York, NY, USA, 2012. ACM.

[6] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl.
A stitch in time: Supporting android developers in writingsecure code.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS *17. ACM, 2017.

